
SPPARKS Users Manual
Stochastic Parallel PARticle Kinetic Simulator

http://www.sandia.gov/~sjplimp/spparks.html − Sandia National Laboratories
Copyright (2008) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

Table of Contents
SPPARKS Documentation...1
1. Introduction..2

1.1 What is SPPARKS..2
1.2 SPPARKS features..3
Pre− and post−processing:...3
1.4 Open source distribution..3
1.4 Acknowledgments and citations..4

2. Getting Started...5
2.1 What's in the SPPARKS distribution..5
2.2 Making SPPARKS..5
2.3 Making SPPARKS with optional packages..7
2.4 Building SPPARKS as a library..8
2.5 Running SPPARKS...8
2.6 Command−line options...9

3. Commands...11
3.1 SPPARKS input script...11
3.2 Parsing rules..12
3.3 Input script structure..12
3.4 Commands listed by category...13
3.5 Individual commands..13

4. How−to discussions...15
4.1 Running multiple simulations from one input script...15
4.2 Coupling SPPARKS to other codes..16

5. Example problems..18
6. Performance &scalability...19
7. Additional tools..20
8. Modifying &extending SPPARKS..21

Application styles..22
Diagnostic styles..23
Input script commands..23
Solve styles..23

9. Errors..25
9.1 Common problems..25
9.2 Reporting bugs...26
9.3 Error &warning messages...26
Errors:..26
Warnings:..30

add_reaction command..31
add_species command..32
app_style chemistry command...33
app_style diffusion command..34
app_style diffusion/table command...34
app_style diffusion/nonlinear command..34
app_style ising command...36
app_style ising/single command..36
app_style membrane command..38
app_style pore command...40
app_style pore/nonlinear command...40

SPPARKS Users Manual

i

Table of Contents
app_style potts command...41
app_style potts/neigh command...41
app_style potts/neighonly command..41
app_style potts/variable command...41
app_style potts/pin command...43
app_style command..45
app_style surface command...49
app_style test/group command...52
clear command...54
count command..55
diag_style cluster command...56
diag_style energy command...58
diag_style eprof3d command...59
diag_style command..60
dump command..62
echo command...64
ecoord command..65
if command..66
include command...67
inclusion command..68
jump command...69
label command...70
log command..71
next command..72
pin command..74
print command...75
reset_time command..76
run command..77
sector command...79
seed command..81
shell command...82
app_style command..84
app_style command..85
solve_style command...86
app_style command..88
stats command..89
sweep command...91
temperature command..93
variable command..94
volume command...98

SPPARKS Users Manual

ii

SPPARKS Documentation

(13 Apr 2009 version of SPPARKS)

SPPARKS stands for Stochastic Parallel PARticle Kinetic Simulator.

SPPARKS is a kinetic Monte Carlo (KMC) code designed to run efficiently on parallel computers using both
KMC and Metropolis Monte Carlo algorithms. It was developed at Sandia National Laboratories, a US
Department of Energy facility, with funding from the DOE. It is an open−source code, distributed freely under the
terms of the GNU Public License (GPL).

The developers of SPPARKS are Steve Plimpton, Aidan Thompson, and Alex Slepoy. They can be contacted at
sjplimp@sandia.gov, athomps@sandia.gov, and alexander.slepoy@nnsa.doe.gov. The SPPARKS WWW Site at
http://www.cs.sandia.gov/~sjplimp/spparks.html has more information about the code and its uses.

The SPPARKS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the SPPARKS documentation.

Once you are familiar with SPPARKS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all SPPARKS commands.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations

1.

Getting started
2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command−line options

2.

Commands
3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.

How−to discussions4.
Example problems5.
Performance &scalability6.
Additional tools7.
Modifying &Extending SPPARKS8.
Errors
9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages

9.

Future plans10.

1

http://www.cs.sandia.gov/~sjplimp
http://www.cs.sandia.gov/~sjplimp/spparks.html
http://www.easysw.com/htmldoc

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

1. Introduction

These sections provide an overview of what SPPARKS can do, describe what it means for SPPARKS to be an
open−source code, and acknowledge the funding and people who have contributed to SPPARKS.

1.1 What is SPPARKS
1.2 SPPARKS features
1.3 Open source distribution
1.4 Acknowledgments and citations

1.1 What is SPPARKS

SPPARKS is a kinetic Monte Carlo (KMC) code that has algorithms for both rejection−free KMC and null−event
or rejection KMC (rKMC). In a generic sense its KMC and rKMC solvers catalog a list of "events", each with an
associated "probability", choose a single event to perform, and advance time by the correct amount. Events may
be chosen indivudually at random or a sweep of a geometric lattice can be performed to select possible events in a
more ordered fashion.

Note that rKMC is different from Metropolis MC, which is sometimes called thermodynamic−equilibrium MC or
barrier−free MC, in that rKMC still uses rates to define events, often associated with the rate for the system to
cross some energy barrier. Thus both KMC and rKMC track the dynamic evolution of a system in a time−accurate
manner as events are performed. Metropolis MC is typically used to sample states from a system in equilibrium or
to drive a system to equilibrium (energy minimization). It does this be performing (possibly) non−physical events.
As such it has no requirement to sample events with the correct relative probabilities or to limit itself to physical
events (e.g. it can change an atom to a new species). Because of this it also does not evolve the system in a
time−accurate manner; in general there is no "time" associated with Metropolis MC events.

Applications are implemented in SPPARKS which define events and their probabilities and acceptance/rejection
criteria. They are coupled to solvers or sweepers to perform KMC or rKMC simulations. The KMC or rKMC
options for an application in SPPARKS can be written to define rates based on energy differences between the
initial and final state of an event and a Metropolis−style accept/reject criterion based on the Boltzmann factor
SPPARKS will then perform a Metropolis−style Monte Carlo simulation.

In parallel, a geometric partitioning of the simulation domain is performed. Sub−partitioning of processor
domains into colors or quadrants (2d) and octants (3d) is done to enable multiple events to be performed on
multiple processors simultaneously. Communication of boundary information is performed as needed.

Parallelism can also be invoked to perform multiple runs on a collection of processors, for statistical puposes.

SPPARKS is designed to be easy to modify and extend. For example, new solvers and sweeping rules can be
added, as can new applications. Applications can define new commands which are read from the input script.

SPPARKS is written in C++. It runs on single−processor desktop or laptop machines, but for some applications,
can also run on parallel computers. SPPARKS will run on any parallel machine that compiles C++ and supports
the MPI message−passing library. This includes distributed− or shared−memory machines.

SPPARKS is a freely−available open−source code. See the SPPARKS WWW Site for download information. It is
distributed under the terms of the GNU Public License, which means you can use or modify the code however
you wish. The only restrictions imposed by the GPL are on how you distribute the code further. See this section

2

http://www.cs.sandia.gov/~sjplimp/spparks.html
http://www-unix.mcs.anl.gov/mpi
http://www.cs.sandia.gov/~sjplimp/spparks.html
http://www.gnu.org/copyleft/gpl.html

for a brief discussion of the open−source philosophy.

1.2 SPPARKS features

These are the applications currently available in SPPARKS:

Diffusion model•
Ising model•
Potts model•
Membrane model•
Biochemcial reaction network model•

These are the KMC solvers currently available in SPPARKS and their scaling properties:

linear, O(N)•
tree, O(logN)•
group, O(1)•

Pre− and post−processing:

Our group has written and released a separate toolkit called Pizza.py which provides tools which can be used to
setup, analyze, plot, and visualize data for SPPARKS simulations. Pizza.py is written in Python and is available
for download from the Pizza.py WWW site.

1.4 Open source distribution

SPPARKS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free−of− charge, under the terms of the GNU Public License (GPL). This is often referred to as
open−source distribution − see www.gnu.org or www.opensource.org for more details. The legal text of the GPL
is in the LICENSE file that is included in the SPPARKS distribution.

Here is a summary of what the GPL means for SPPARKS users:

(1) Anyone is free to use, modify, or extend SPPARKS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of SPPARKS, it must remain open−source, meaning you distribute source
code under the terms of the GPL. You should clearly annotate such a code as a derivative version of SPPARKS.

(3) If you distribute any code that used SPPARKS source code, including calling it as a library, then that must
also be open−source, meaning you distribute its source code under the terms of the GPL.

(4) If you give SPPARKS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open−source code, if you use SPPARKS for something useful or if you fix a bug or add a new
feature or applicaton to the code, let us know. We would like to include your contribution in the released version
of the code and/or advertise your success on our WWW page.

3

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

1.4 Acknowledgments and citations

SPPARKS is distributed by Sandia National Laboratories. SPPARKS development has been funded by the US
Department of Energy (DOE), through its LDRD and ASC programs.

The primary authors of SPPARKS are Steve Plimpton, Aidan Thompson, and Alex Slepoy. They can be contacted
via email: sjplimp@sandia.gov, athomps@sandia.gov, alexander.slepoy@nnsa.doe.gov.

The following Sandians have also contributed to the design and ideas in SPPARKS:

Corbett Battaile•
Liz Holm•
Ed Webb•

4

http://www.sandia.gov
http://www.doe.gov
http://www.doe.gov

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

2. Getting Started

This section describes how to unpack, make, and run SPPARKS.

2.1 What's in the SPPARKS distribution
2.2 Making SPPARKS
2.3 Making SPPARKS with optional packages
2.4 Building SPPARKS as a library
2.5 Running SPPARKS
2.6 Command−line options

2.1 What's in the SPPARKS distribution

When you download SPPARKS you will need to unzip and untar the downloaded file with the following
commands, after placing the tarball in an appropriate directory.

gunzip spparks*.tar.gz
tar xvf spparks*.tar

This will create a spparks directory containing two files and several sub−directories:

README text file

LICENSE the GNU General Public License (GPL)

doc documentation

examples test problems

src source files

2.2 Making SPPARKS

Read this first:

Building SPPARKS can be non−trivial. You will likely need to edit a makefile, there are compiler options, an
MPI library can be used, etc. Please read this section carefully. If you are not comfortable with makefiles, or
building codes on a Unix platform, or running an MPI job on your machine, please find a local expert to help you.

Building a SPPARKS executable:

The src directory contains the C++ source and header files for SPPARKS. It also contains a top−level Makefile
and a MAKE sub−directory with low−level Makefile.* files for several machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, you can type a command like:

make linux
gmake mac

Note that on a multi−processor or multi−core platform you can launch a parallel make, by using the "−j" switch
with the make command, which will typically build SPPARKS more quickly.

If you get no errors and an executable like spk_linux or spk_mac is produced, you're done; it's your lucky day.

5

http://www.cs.sandia.gov/~sjplimp/spparks.html

Errors that can occur when making SPPARKS:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gmake instead of
make. If that doesn't work, try using a −f switch with your make command to use Makefile.list which explicitly
lists all the needed files, e.g.

make makelist
make −f Makefile.list linux
gmake −f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build SPPARKS.

(2) Other errors typically occur because the low−level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE sub−directory. Use whatever existing
file is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low−level Makefile.foo:

These are the issues you need to address when editing a low−level Makefile for your machine. With a couple
exceptions, the only portion of the file you should need to edit is the "System−specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is the
line you will see if you just type "make".

(2) Set the paths and flags for your C++ compiler, including optimization flags. You can use g++, the
open−source GNU compiler, which is available on all Unix systems. Vendor compilers often produce faster code.
On boxes with Intel CPUs, we suggest using the free Intel icc compiler, which you can download from Intel's
compiler site.

(3) If you want SPPARKS to run in parallel, you must have an MPI library installed on your platform. If you do
not use "mpicc" as your compiler/linker, then Makefile.foo needs to specify where the mpi.h file (−I switch) and
the libmpi.a library (−L switch) is found. If you are installing MPI yourself, we recommend Argonne's MPICH
1.2 or 2.0 which can be downloaded from the Argonne MPI site. OpenMPI should also work. If you are running
on a big parallel platform, your system people or the vendor should have already installed a version of MPI,
which will be faster than MPICH or OpenMPI, so find out how to build and link with it. If you use MPICH or
OpenMPI, you will have to configure and build it for your platform. The MPI configure script should have
compiler options to enable you to use the same compiler you are using for the SPPARKS build, which can avoid
problems that may arise when linking SPPARKS to the MPI library.

(4) If you just want SPPARKS to run on a single processor, you can use the STUBS library in place of MPI, since
you don't need an MPI library installed on your system. See the Makefile.serial file for how to specify the −I and
−L switches. You will also need to build the STUBS library for your platform before making SPPARKS itself.
From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking to SPPARKS. If the
build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI−standard
function clock() rolls over after an hour or so, and is therefore insufficient for timing long SPPARKS simulations.

(5) The DEPFLAGS setting is how the C++ compiler creates a dependency file for each source file. This speeds
re−compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support dependency

6

http://www.intel.com/software/products/noncom
http://www.intel.com/software/products/noncom
http://www-unix.mcs.anl.gov/mpi

file creation, or may use a different switch than −D. GNU g++ works with −D. If your compiler can't create
dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.foo patterned after
Makefile.tflop, which uses different rules that do not involve dependency files.

That's it. Once you have a correct Makefile.foo and you have pre−built the MPI library it uses, all you need to do
from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable spk_foo when the build is complete.

Additional build tips:

(1) Building SPPARKS for multiple platforms.

You can make SPPARKS for multiple platforms from the same src directory. Each target creates its own object
sub−directory called Obj_name where it stores the system−specific *.o files.

(2) Cleaning up.

Typing "make clean" will delete all *.o object files created when SPPARKS is built.

(3) Building for a Macintosh.

OS X is BSD Unix, so it already works. See the Makefile.mac file.

2.3 Making SPPARKS with optional packages

The source code for SPPARKS is structured as a large set of core files which are always used, plus optional
packages, which are groups of files that enable a specific set of features. You can see the list of both standard and
user−contributed packages by typing "make package".

Note: this sub−section is a placeholder. There are no packages distributed with the current version of SPPARKS.

Any or all packages can be included or excluded when SPPARKS is built. You may wish to exclude certain
packages if you will never run certain kinds of simulations.

By default, SPPARKS includes no packages.

Packages are included or excluded by typing "make yes−name" or "make no−name", where "name" is the name of
the package. You can also type "make yes−all" or "make no−all" to include/exclude all packages. These
commands work by simply moving files back and forth between the main src directory and sub−directories with
the package name, so that the files are seen or not seen when SPPARKS is built. After you have included or
excluded a package, you must re−build SPPARKS.

Additional make options exist to help manage SPPARKS files that exist in both the src directory and in package
sub−directories. You do not normally need to use these commands unless you are editing SPPARKS files or have
downloaded a patch from the SPPARKS WWW site. Typing "make package−update" will overwrite src files with
files from the package directories if the package has been included. It should be used after a patch is installed,
since patches only update the master package version of a file. Typing "make package−overwrite" will overwrite
files in the package directories with src files. Typing "make package−check" will list differences between src and
package versions of the same files.

7

2.4 Building SPPARKS as a library

SPPARKS can be built as a library, which can then be called from another application or a scripting language.
Building SPPARKS as a library is done by typing

make makelib
make −f Makefile.lib foo

where foo is the machine name. The first "make" command will create a current Makefile.lib with all the file
names in your src dir. The 2nd "make" command will use it to build SPPARKS as a library. This requires that
Makefile.foo have a library target (lib) and system−specific settings for ARCHIVE and ARFLAGS. See
Makefile.linux for an example. The build will create the file libspk_foo.a which another application can link to.

When used from a C++ program, the library allows one or more SPPARKS objects to be instantiated. All of
SPPARKS is wrapped in a SPPARKS_NS namespace; you can safely use any of its classes and methods from
within your application code, as needed.

When used from a C or Fortran program or a scripting language, the library has a simple function−style interface,
provided in library.cpp and library.h.

You can add as many functions as you wish to library.cpp and library.h. In a general sense, those functions can
access SPPARKS data and return it to the caller or set SPPARKS data values as specified by the caller. These 4
functions are currently included in library.cpp:

void spparks_open(int, char **, MPI_Comm, void **ptr);
void spparks_close(void *ptr);
int spparks_file(void *ptr, char *);
int spparks_command(void *ptr, char *);

The SPPARKS_open() function is used to initialize SPPARKS, passing in a list of strings as if they were
command−line arguments when SPPARKS is run from the command line and a MPI communicator for
SPPARKS to run under. It returns a ptr to the SPPARKS object that is created, and which should be used in
subsequent library calls. Note that SPPARKS_open() can be called multiple times to create multiple SPPARKS
objects.

The SPPARKS_close() function is used to shut down SPPARKS and free all its memory. The SPPARKS_file()
and SPPARKS_command() functions are used to pass a file or string to SPPARKS as if it were an input file or
single command read from an input script.

2.5 Running SPPARKS

By default, SPPARKS runs by reading commands from stdin; e.g. spk_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test SPPARKS on any of the sample inputs provided in the examples directory. Input scripts are named
in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of processors it
was run on.

Here is how you might run the Potts model tests on a Linux box, using mpirun to launch a parallel job:

cd src
make linux

8

cp spk_linux ../examples/lj
cd ../examples/potts
mpirun −np 4 spk_linux <in.potts

The screen output from SPPARKS is described in the next section. As it runs, SPPARKS also writes a log.spparks
file with the same information.

Note that this sequence of commands copies the SPPARKS executable (spk_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch spk_linux on its own and not
under mpirun). If that happens, SPPARKS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If SPPARKS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See this section for a discussion of the various kinds of errors
SPPARKS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

SPPARKS can run a problem on any number of processors, including a single processor. SPPARKS can run as
large a problem as will fit in the physical memory of one or more processors. If you run out of memory, you must
run on more processors or setup a smaller problem.

2.6 Command−line options

At run time, SPPARKS recognizes several optional command−line switches which may be used in any order. For
example, spk_ibm might be launched as follows:

mpirun −np 16 spk_ibm −var f tmp.out −log my.log −screen none <in.alloy

These are the command−line options:

−echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

−partition 8x2 4 5 ...

Invoke SPPARKS in multi−partition mode. When SPPARKS is run on P processors and this switch is not used,
SPPARKS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "−partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

The input script specifies what simulation is run on which partition; see the variable and next commands. This
howto section gives examples of how to use these commands in this way. Simulations running on different
partitions can also communicate with each other; see the temper command.

−in file

9

Specify a file to use as an input script. This is an optional switch when running SPPARKS in one−partition mode.
If it is not specified, SPPARKS reads its input script from stdin − e.g. spk_linux < in.run. This is a required switch
when running SPPARKS in multi−partition mode, since multiple processors cannot all read from stdin.

−log file

Specify a log file for SPPARKS to write status information to. In one−partition mode, if the switch is not used,
SPPARKS writes to the file log.spparks. If this switch is used, SPPARKS writes to the specified file. In
multi−partition mode, if the switch is not used, a log.SPPARKS file is created with hi−level status information.
Each partition also writes to a log.SPPARKS.N file where N is the partition ID. If the switch is specified in
multi−partition mode, the hi−level logfile is named "file" and each partition also logs information to a file.N. For
both one−partition and multi−partition mode, if the specified file is "none", then no log files are created. Using a
log command in the input script will override this setting.

−screen file

Specify a file for SPPARKS to write its screen information to. In one−partition mode, if the switch is not used,
SPPARKS writes to the screen. If this switch is used, SPPARKS writes to the specified file instead and you will
see no screen output. In multi−partition mode, if the switch is not used, hi−level status information is written to
the screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi−partition mode, the hi−level screen dump is named "file" and each partition also writes screen information
to a file.N. For both one−partition and multi−partition mode, if the specified file is "none", then no screen output
is performed.

−var name value

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). The value can be any string. Using this command−line option is equivalent to putting the line "variable
name index value" at the beginning of the input script. Defining a variable as a command−line argument overrides
any setting for the same variable in the input script, since variables cannot be re−defined. See the variable
command for more info on defining variables and this section for more info on using variables in input scripts.

10

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

3. Commands

This section describes how a SPPARKS input script is formatted and what commands are used to define a
simulation.

3.1 SPPARKS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 SPPARKS input script

SPPARKS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, SPPARKS exits. Each command causes SPPARKS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:

(1) SPPARKS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

count ligand 10000
run 100
run 100

does something different than this sequence:

run 100
count ligand 10000
run 100

In the first case, the count of ligand molecules is set to 10000 before the first simulation and whatever the count
becomes will be used as input for the second simulation. In the 2nd case, the default count of 0 is used for the 1st
simulation and then the count is set to 10000 molecules before the second simulation.

(2) Some commands are only valid when they follow other commands. For example you cannot set the count of a
molecular species until the add_species command has been used to define that species.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect.

(4) Some commands are only used by a specific application(s).

Many input script errors are detected by SPPARKS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

11

http://www.cs.sandia.gov/~sjplimp/spparks.html

3.2 Parsing rules

Each non−blank line in the input script is treated as a command. SPPARKS commands are case sensitive.
Command names are lower−case, as are specified command arguments. Upper case letters may be used in file
names or user−chosen ID strings.

Here is how each line in the input script is parsed by SPPARKS:

(1) If the line ends with a ""character (with no trailing whitespace), the command is assumed to continue on the
next line. The next line is concatenated to the previous line by removing the ""character and newline. This allows
long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters which indicate variables that are replaced with a text string. If
the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the character immediately following the $. Thus ${myTemp} and
$x refer to variable names "myTemp" and "x". See the variable command for details of how strings are assigned
to variables and how they are substituted for in input scripts.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the dump
modify or fix print commands for examples. A '#' or '$' character that in text between double quotes will not be
treated as a comment or substituted for as a variable.

3.3 Input script structure

This section describes the structure of a typical SPPARKS input script. The "examples" directory in the
SPPARKS distribution contains sample input scripts; the corresponding problems are discussed in this section,
and some are animated on the SPPARKS WWW Site.

A SPPARKS input script typically has 3 parts:

choice of application, solver, sweeper•
settings•
run a simulation•

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 3 parts is now described in more detail. Remember that almost all the commands need only
be used if a non−default value is desired.

(1) Choice of application, solver, sweep method

Use the app_style, solve_style, and sweep commands to setup the kind of simulation you wish to run. Note that
sweeping is only relevant to applications that define a geometric lattice of event sites and only if you wish to
perform rejection kinetic Monte Carlo updates.

(2) Settings

12

http://www.cs.sandia.gov/~sjplimp/spparks.html

Parameters for a simulation can be defined by application−specific commands or by generic commands that are
common to many kinds of applications. See the doc pages for individual applications for information on the
former. Examples of the latter are the stats and temperature commands.

The diag_style command can also be used to setup various diagnostic computations to perform during a
simulation.

(3) Run a simulation

A kinetic or Metropolis Monte Carlo simulation is performed using the run command.

3.4 Commands listed by category

This section lists all SPPARKS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some commands are only usable with certain applications. Also, some style options for
some commands are part of specific SPPARKS packages, which means they cannot be used unless the package
was included when SPPARKS was built. Not all packages are included in a default SPPARKS build. These
dependencies are listed as Restrictions in the command's documentation.

Initialization commands:

app_style, solve_style, sweep, seed

Application−specific commands:

add_reaction, add_species, count, ecoord, event, inclusion, temperature, volume

Output commands:

diag_style, dump, stats

Actions:

run

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all SPPARKS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that some commands are
only usable with certain applications. Also, some style options for some commands are part of specific SPPARKS
packages, which means they cannot be used unless the package was included when SPPARKS was built. Not all
packages are included in a default SPPARKS build. These dependencies are listed as Restrictions in the
command's documentation.

add_reactionadd_speciesapp_style clear count diag_style

dump echo ecoord if include inclusion

13

jump label log next pin print

reset_time run sector seed shell solve_style

stats sweep temperaturevariablevolume

Application styles. See the app_style command for one−line descriptions of each style or click on the style itself
for a full description:

chemistry diffusion diffusion/table diffusion/nonlinear ising membraneporepore/nonlinear

potts potts/neighpotts/neighonly potts/pin test/group

Solve styles. See the solve_style command for one−line descriptions of each style or click on the style itself for a
full description:

group linear tree

Diagnostic styles. See the diag_style command for one−line descriptions of each style or click on the style itself
for a full description:

clusterenergyeprof3d

14

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

4. How−to discussions

The following sections describe how to perform various operations in SPPARKS.

4.1 Running multiple simulations from one input script
4.2 Coupling SPPARKS to other codes

The example input scripts included in the SPPARKS distribution and highlighted in this section also show how to
setup and run various kinds of problems.

4.1 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

app_style ising/2d/4n 100 100 12345
...
run 1.0
run 1.0
run 1.0
run 1.0
run 1.0

would run 5 successive simulations of the same system for a total of 5.0 seconds of elapsed time.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re−initialize SPPARKS. For example, this script

app_style ising/2d/4n 100 100 12345
...
run 1.0
clear
app_style ising/2d/4n 200 200 12345
...
run 1.0

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.runs

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
app_style ising/2d/4n 100 100 12345
include temperature.txt
run 1.0
shell cd ..
clear
next d
jump in.runs

15

http://www.cs.sandia.gov/~sjplimp/spparks.html

would run 8 simulations in different directories, using a temperature.txt file in each directory with an input
command to set the temperature. The same concept could be used to run the same system at 8 different sizes,
using a size variable and storing the output in different log files, for example

variable a loop 8
variable size index 100 200 400 800 1600 3200 6400 10000
log log.${size}
app_style ising/2d/4n ${size} ${size} 12345
run 1.0
next size
next a
jump in.runs

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running SPPARKS on a single partition of processors. SPPARKS can be run on multiple partitions via the
"−partition" command−line switch as described in this section of the manual.

In the last 2 examples, if SPPARKS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe−style variables, as described in the variable command. Also, the
"next size" and "next a" commands would need to be replaced with a single "next a size" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.2 Coupling SPPARKS to other codes

SPPARKS is designed to allow it to be coupled to other codes. For example, an atomistic code might relax atom
positions and pass those positions to SPPARKS. Or a continuum finite element (FE) simulation might use a
Monte Carlo relaxation to formulate a boundary condition on FE nodal points, compute a FE solution, and return
the results to the MC calculation.

SPPARKS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new diag_style command that calls the other code. In this scenario, SPPARKS is the driver code.
During its timestepping, the diagnostic is invoked, and can make library calls to the other code, which has been
linked to SPPARKS as a library. See this section of the documentation for info on how to add a new diagnostic to
SPPARKS.

(2) Define a new SPPARKS command that calls the other code. This is conceptually similar to method (1), but in
this case SPPARKS and the other code are on a more equal footing. Note that now the other code is not called
during the even loop of a SPPARKS run, but between runs. The SPPARKS input script can be used to alternate
SPPARKS runs with calls to the other code, invoked via the new command.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand−alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand−alone code could communicate with SPPARKS thru files that the
command writes and reads.

See this section of the documentation for how to add a new command to SPPARKS.

(3) Use SPPARKS as a library called by another code. In this case the other code is the driver and calls
SPPARKS as needed. Or a wrapper code could link and call both SPPARKS and another code as libraries.

16

This section of the documentation describes how to build SPPARKS as a library. Once this is done, you can
interface with SPPARKS either via C++, C, or Fortran (or any other language that supports a vanilla C−like
interface, e.g. a scripting language). For example, from C++ you could create one (or more) "instances" of
SPPARKS, pass it an input script to process, or execute individual commands, all by invoking the correct class
methods in SPPARKS. From C or Fortran you can make function calls to do the same things. Library.cpp and
library.h contain such a C interface with the functions:

void spparks_open(int, char **, MPI_Comm, void **);
void spparks_close(void *);
void spparks_file(void *, char *);
char *spparks_command(void *, char *);

The functions contain C++ code you could write in a C++ application that was invoking SPPARKS directly. Note
that SPPARKS classes are defined within a SPPARKS namespace (SPPARKS_NS) if you use them from another
C++ application.

Two of the routines in library.cpp are of particular note. The SPPARKS_open() function initiates SPPARKS and
takes an MPI communicator as an argument. It returns a pointer to a SPPARKS "object". As with C++, the
SPPARKS_open() function can be called multiple times, to create multiple instances of SPPARKS.

SPPARKS will run on the set of processors in the communicator. This means the calling code can run SPPARKS
on all or a subset of processors. For example, a wrapper script might decide to alternate between SPPARKS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
SPPARKS and half to the other code and run both codes simultaneously before syncing them up periodically.

Library.cpp contains a SPPARKS_command() function to which the caller passes a single SPPARKS command
(a string). Thus the calling code can read or generate a series of SPPARKS commands (e.g. an input script) one
line at a time and pass it thru the library interface to setup a problem and then run it.

A few other sample functions are included in library.cpp, but the key idea is that you can write any functions you
wish to define an interface for how your code talks to SPPARKS and add them to library.cpp and library.h. The
routines you add can access any SPPARKS data. The examples/couple directory has example C++ and C codes
which show how a stand−alone code can link SPPARKS as a library, run SPPARKS on a subset of processors,
grab data from SPPARKS, change it, and put it back into SPPARKS.

17

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

5. Example problems

The SPPARKS distribution includes an examples sub−directory with several sample problems. Each problem is in
a sub−directory of its own. Most are small models that can be run quickly, requiring at most a couple of minutes
to run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. A few sample log file outputs on different machines and different numbers of processors
are included in the directories to compare your answers to. E.g. a log file like log.potts.foo.P means it ran on P
processors of machine "foo".

In some cases, the dump files produced by the example runs can be animated using the various visuzlization tools,
such as the Pizza.py toolkit referenced in the Additional Tools section of the SPPARKS documentation.
Animations of some of these examples can be viewed on the Movies section of the SPPARKS WWW Site.

These are the sample problems in the examples sub−directories:

groups test of group−based KMC solver

ising standard Ising model

membrane
membrane model of pore formation around protein
inclusions

potts multi−state Potts model for grain growth
Here is how you might run and visualize one of the sample problems:

cd examples/potts
cp ../../src/spk_linux . # copy SPPARKS executable to this dir
spk_linux <in.potts # run the problem

Running the simulation produces the files dump.potts and log.spparks.

18

http://www.cs.sandia.gov/~sjplimp/spparks.html
http://www.cs.sandia.gov/~sjplimp/spparks.html

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

6. Performance &scalability

Eventually this section will highlight SPPARKS performance in serial and parallel on interesting Monte Carlo
benchmarks.

19

http://www.cs.sandia.gov/~sjplimp/spparks.html

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

7. Additional tools

SPPARKS is designed to be a Monte Carlo (MC) kernel for performing kinetic MC or Metropolis MC
computations. Additional pre− and post−processing steps are often necessary to setup and analyze a simulation.
This section describes additional tools that may be useful.

Users can extend SPPARKS by writing diagnostic classes that perform desired analysis or computations. See this
section for more info.

Our group has written and released a separate toolkit called Pizza.py which provides tools which may be useful
for setup, analysis, plotting, and visualization of SPPARKS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

20

http://www.cs.sandia.gov/~sjplimp/spparks.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

8. Modifying &extending SPPARKS

SPPARKS is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to SPPARKS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of SPPARKS.

The best way to add a new feature is to find a similar feature in SPPARKS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi−level structure of SPPARKS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C−style code and operate on simple C−style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class. Creating a new
class requires 2 files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain
methods to work as a new option. Depending on how different your new feature is compared to existing features,
you can either derive from the base class itself, or from a derived class that already exists. Enabling SPPARKS to
invoke the new class is as simple as adding two lines to the style_user.h file, in the same syntax as other
SPPARKS classes are specified in the style.h file.

The advantage of C++ and its object−orientation is that all the code and variables needed to define the new
feature are in the 2 files you write, and thus shouldn't make the rest of SPPARKS more complex or cause
side−effect bugs.

Here is a concrete example. Suppose you write 2 files app_foo.cpp and app_foo.h that define a new class AppFoo
that implements a Monte Carlo model described in the classic 1997 paper by Foo, et al. If you wish to invoke that
application in a SPPARKS input script with a command like

app_style foo 0.1 3.5

you put your 2 files in the SPPARKS src directory, add 2 lines to the style_user.h file, and re−make the code.

The first line added to style_user.h would be

AppStyle(foo,AppFoo)

in the #ifdef AppClass section, where "foo" is the style keyword in the app_style command, and AppFoo is the
class name in your C++ files.

The 2nd line added to style_user.h would be

#include "app_foo.h"

in the #ifdef AppInclude section, where app_foo.h is the name of your new include file.

When you re−make SPPARKS, your new application becomes part of the executable and can be invoked with a
app_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by your
new class.

21

http://www.cs.sandia.gov/~sjplimp/spparks.html

Here is a list of the new features that can be added in this way.

Application styles•
Diagnostic styles•
Input script commands•
Solve styles•

As illustrated by the application example, these options are referred to in the SPPARKS documentation as the
"style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of SPPARKS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality SPPARKS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Application styles

In SPPARKS, applications are what define the simulation model that is evolved via Monte Carlo algorithms. A
new model typically requires adding a new application to the code. Read the doc page for the app_style command
to understand the distinction between on−lattice and off−lattice applications. A new off−lattice application can be
anything you wish. On−lattice applications are derive from the AppLattice class.

For off−lattice applications, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See app.h for details.

input additional commands the application defines

init setup the application

run perform iterations or timestepping of the model

dump_headerwrite header of dump file

dump write a snapshot of state of model

set_stats setup application−specific statistics

set_dump setup application−specific dump
For off−lattice applications, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See app_lattice.h for details. Note that two of the methods are required if
you want your application to perform kinetic Monte Carlo (KMC) with a solver. One of the methods is required if
you want your application to perform rejection KMC (rKMC) with a sweep method.

site_energy compute energy of a lattice site

site_event_rejectionpeform an event with null−bin rejection (for rKMC)

site_propensity compute propensity of all events on a site (for KMC)

site_event perform a kinetic Monte Carlo event (for KMC)

input_app perform application−specific input

init_app perform application−specific initialization
For an on−lattice application, you also need to define various flags in the constructor of your application, to insure
proper operation with the "KMC solvers'_solve.html and rejection KMC sweep methods. These are the flags, all
of which have default values set in app_lattice.cpp:

22

delpropensity
how many neighbors away values are needed to compute
propensity

delevent
how many neighbors away may the value can be changed by
an event

allow_kmc 1 if methods are provided for KMC

allow_rejection 1 if methods are provided for rejection KMC

allow_masking 1 if rKMC method supports masking

numrandom # of random numbers used by the site_event_rejection method

Diagnostic styles

Diagnostic classes compute some form of analysis periodically during a simulation. See the diag_style command
for details.

To add a new diagnostic, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

init setup the computation

compute perform the analysis computation

stats_header
what to add to statistics header for this
diagnostic

stats fields added to statistics by this diagnostic

Input script commands

New commands can be added to SPPARKS input scripts by adding new classes that have a "command" method
and are listed in the Command sections of style_user.h (or style.h). For example, the shell commands (cd, mkdir,
rm, etc) are implemented in this fashion. When such a command is encountered in the SPPARKS input script,
SPPARKS simply creates a class with the corresponding name, invokes the "command" method of the class, and
passes it the arguments from the input script. The command method can perform whatever operations it wishes on
SPPARKS data structures.

The single method your new class must define is as follows:

commandoperations performed by the new command
Of course, the new class can define other methods and variables as needed.

Solve styles

In SPPARKS, a solver performs the kinetic Monte Carlo (KMC) operation of selecting an event from a list of
events and associated probabilities. See the solve_style command for details.

To add a new KMC solver, here is a brief description of methods you define in your new derived class. Some of
them are required; some are optional. See diag.h for details.

Here is a brief description of methods you define in your new derived class. All of them are required. See solve.h
for details.

23

clone
make a copy of the solver for use within a sector of the
domain

init initialize the solver

update update one or more event probabilities

resize change the number of events in the list

event select an event and associated timestep

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Monte Carlo Applications, 75, 345 (1997).

24

Previous Section − SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands − Next Section

9. Errors

This section describes the various kinds of errors you can encounter when using SPPARKS.

9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages

9.1 Common problems

A SPPARKS simulation typically has two stages, setup and run. Many SPPARKS errors are detected at setup
time; others may not occur until the middle of a run.

SPPARKS tries to flag errors and print informative error messages so you can fix the problem. Of course
SPPARKS cannot figure out your physics mistakes, like choosing too big a timestep or setting up an invalid
lattice. If you find errors that SPPARKS doesn't catch that you think it should flag, please send an email to the
developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.spparks file or using the echo command to see it on the screen. For
example you can run your script as

spk_linux −echo screen <in.script

For a given command, SPPARKS expects certain arguments in a specified order. If you mess this up, SPPARKS
will often flag the error, but it may read a bogus argument and assign a value that is not what you wanted. E.g. if
the input parser reads the string "abc" when expecting an integer value, it will assign the value of 0 to a variable.

Generally, SPPARKS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not. If
SPPARKS crashes or hangs without spitting out an error message first then it could be a bug (see this section) or
one of the following cases:

SPPARKS runs in the available memory each processor can allocate. All large memory allocations in the code are
done via C−style malloc's which will generate an error message if you run out of memory. Smaller chunks of
memory are allocated via C++ "new" statements. If you are unlucky you could run out of memory when one of
these small requests is made, in which case the code will crash, since SPPARKS doesn't trap on those errors.

Illegal arithmetic can cause SPPARKS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild energy values or NaN values in your SPPARKS output,
something is wrong with your simulation.

In parallel, one way SPPARKS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

25

http://www.cs.sandia.gov/~sjplimp/spparks.html

9.2 Reporting bugs

If you are confident that you have found a bug in SPPARKS, please send an email to the developers.

First, check the "New features and bug fixes" section of the SPPARKS WWW site to see if the bug has already
been reported or fixed.

If not, the most useful thing you can do for us is to isolate the problem. Run it on the smallest problem and fewest
number of processors and with the simplest input script that reproduces the bug.

In your email, describe the problem and any ideas you have as to what is causing it or where in the code the
problem might be. We'll request your input script and data files if necessary.

9.3 Error &warning messages

These are two alphabetic lists of the ERROR and WARNING messages SPPARKS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Grepping the
source files for the text of the error message and staring at the source code and comments is also not a bad idea!
Note that sometimes the same message can be printed from multiple places in the code.

Errors:

All universe/uloop variables must have same # of values
Self−explanatory.

All variables in next command must be same style
Self−explanatory.

Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.

Arccos of invalid value in variable formula
Argument of arccos() must be between −1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between −1 and 1.

Bad connectivity result
Internal SPPARKS error. Should not occur.

Cannot mask sweeping with non−zero temperature
A finite temperature implies random spin flips can occur. Thus a site cannot be masked out with 100%
certainty.

Cannot open diag style cluster3d dump file
Self−explanatory.

Cannot open diag_style cluster dump file
Self−explanatory.

Cannot open diag_style cluster output file
Self−explanatory.

Cannot open diag_style cluster2d dump file
Self−explanatory.

Cannot open diag_style cluster2d output file
Self−explanatory.

Cannot open diag_style cluster3d dump file
Self−explanatory.

Cannot open diag_style cluster3d output file
Self−explanatory.

Cannot open diag_style energy output file

26

http://www.cs.sandia.gov/~sjplimp/spparks.html

Self−explanatory.
Cannot open diag_style energy2d output file

Self−explanatory.
Cannot open diag_style energy3d output file

Self−explanatory.
Cannot open diag_style eprof3d output file

Self−explanatory.
Cannot open dump file

Self−explanatory.
Cannot open file %s

Self−explanatory.
Cannot open input script %s

Self−explanatory.
Cannot open log.spparks

Self−explanatory.
Cannot open logfile %s

Self−explanatory.
Cannot open logfile

Self−explanatory.
Cannot open screen file

The screen file specified as a command−line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe log file
For a multi−partition run, the master log file cannot be opened. Check that the directory you are running
in allows for files to be created.

Cannot open universe screen file
For a multi−partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot redefine variable as a different style
An equal−style variable can be re−defined but only if it was originally an equal−style variable.

Cannot use solver in parallel
A KMC solver cannot be used in parallel without a sweep style being defined.

Cannot use solver with non−KMC sweeper
Can only use a KMC solver with a sweep style that invokes the KMC option.

Command used before app_style set
A command is assumed to be application−specific, but is used before the app_style command defines the
application.

Connectivity not defined for this AppLattice child class
Cannot use a diagnostic that requires connectivity for an application derived from AppLattice2d or
AppLattice3d.

Delevent > delpropensity
Such an application does not make sense.

Diag style cluster3d dump file name too long
Self−explanatory.

Diag style incompatible with app style
The lattice styles of the diagnostic and the on−lattice application must match.

Divide by 0 in variable formula
Self−explanatory.

Failed to allocate %ld bytes for array %s
Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to reallocate %ld bytes for array %s

27

Your SPPARKS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Ghost connection was not found
Internal SPPARKS error. Should not occur.

Ghost site was not found
Internal SPPARKS error. Should not occur.

Illegal ... command
Self−explanatory. Check the input script syntax and compare to the documentation for the command. You
can use −echo screen as a command−line option when running SPPARKS to see the offending line.

Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.

Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.

Invalid combination of sweep flags
Self−explanatory.

Invalid command−line argument
One or more command−line arguments is invalid. Check the syntax of the command you are using to
launch SPPARKS.

Invalid event count for app_style test/group
Number of events must be > 0.

Invalid math function in variable formula
The math function is not recognized.

Invalid probability bounds for app_style test/group
Self−explanatory.

Invalid probability bounds for solve_style group
Self−explanatory.

Invalid probability delta for app_style test/group
Self−explanatory.

Invalid site specification in app_style potts/variable
Self−explanatory.

Invalid syntax in variable formula
Self−explanatory.

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self−explanatory.

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable name
Variable name used in an input script line is invalid.

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Invalid volume setting
Volume must be set to value > 0.

Label wasn't found in input script
Self−explanatory.

Lattice app needs a solver or sweeper
Self−explanatory.

Lattice per proc is too small
The section of lattice stored by a processor must be large enough to be split into sectors and not overlap
too far into other processor's sub−domains.

Log of zero/negative in variable formula

28

Self−explanatory.
Maxbuftmp size too small in AppGrain::dump_detailed()

Self−explanatory.
Maxbuftmp size too small in AppGrain::dump_detailed_mask()

Self−explanatory.
Maxbuftmp size too small in DiagCluster2d::dump_clusters()

Self−explanatory.
Maxbuftmp size too small in DiagCluster3d::dump_clusters()

Self−explanatory.
Maxbuftmp size too small in DiagEprof3d::write_prof()

Self−explanatory.
Mismatch in counting for dbufclust

Self−explanatory.
Mismatched sweeper with app lattice

The lattice styles must match between the sweeper and application.
Must define solver with KMC sweeper

Self−explanatory.
Must use −in switch with multiple partitions

A multi−partition simulation cannot read the input script from stdin. The −in command−line option must
be used to specify a file.

No reactions defined for chemistry app
Use the add_reaction command to specify one or more reactions.

No solver class defined
Self−explanatory.

Power by 0 in variable formula
Self−explanatory.

Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Random lattice has no connectivity
The cutoff distance is likely too short.

Reaction ID %s already exists
Cannot re−define a reaction.

Reaction cannot have more than MAX_PRODUCT products
Self−explanatory.

Reaction has no numeric rate
Self−explanatory.

Reaction must have 0,1,2 reactants
Self−explanatory.

Site−site interaction was not found
Internal SPPARKS error. Should not occur.

Species ID %s already exists
Self−explanatory.

Species ID %s does not exist
Self−explanatory.
Sqrt of negative in variable formula
Self−explanatory.

Substitution for undefined variable
Self−explanatory.

Sweep option not yet supported
Not all sweep options are currently supported with all lattice styles.

Unbalanced quotes in input line

29

No matching end double quote was found following a leading double quote.
Unexpected end of lattice file

Self−explanatory.
Unexpected end of lattice spin file

Self−explanatory.
Unexpected value in spin file

Self−explanatory.
Universe/uloop variable count < # of partitions

A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to SPPARKS. Check the input script.

Unknown species in reaction command
Self−explanatory.

Unrecognized command
The command is assumed to be application specific, but is not known to SPPARKS. Check the input
script.

Variable name must be alphanumeric or underscore characters
Self−explanatory.

Vertices read from file incorrectly
Self−explanatory.

World variable count doesn't match # of partitions
A world−style variable must specify a number of values equal to the number of processor partitions.

Warnings:

30

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

add_reaction command

Syntax:

add_reaction reactant1 reactant2 rate product1 product2 ...

reactant1,reactant2 = 0, 1, or 2 reactant species•
rate = reaction rate (see units below)•
product1, product2 = 0, 1, or more product species•

Examples:

add_reaction A B 1.0e10 C
add_reaction 1.0 d
add_reaction b2 1.0e−10 c3 d4 e3

Description:

This command defines a chemical reaction for use in the app_style chemistry application.

Each reaction has 0, 1, or 2 reactants. It also has 0, 1, or more products. The reactants and products are specified
by species ID strings, as defined by the add_species command.

The units of the specified rate constant depend on how many reactants participate in the reaction:

0 reactants = rate is molarity/sec•
1 reactant = rate is 1/sec•
2 reactants = rate is 1/molarity−sec•

Thus the first reaction listed above represents an A and B molecule binding to form a complex C at a rate of
1.0e10 per molarity per second. I.e. A + B −> C.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_species

Default: none

31

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

add_species command

Syntax:

add_species name1 name2 ...

name1,name2 = ID strings for different species•

Examples:

add_species kinase
add_species NFkB kinase2 NFkB−IKK

Description:

This command defines the names of one or more chemical species for use in the app_style chemistry application.

Each ID string can be any sequence of non−whitespace characters (alphanumeric, dash, underscore, etc).

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_reaction, count

Default: none

32

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style chemistry command

Syntax:

app_style chemistry

chemistry = application style name•

Examples:

app_style chemistry

Description:

This application evolves a set of coupled chemical reactions stochastically, producing a time trace of species
concentrations. Chemical species are treated as counts of individual molecules reacting within a reaction volume
in a well−mixed fashion. Individual reactions are chosen via the direct method variant of the Stochastic
Simulation Algorithm (SSA) of (Gillespie).

A prototypical example is to use this model to simulate the execution of a protein signaling network in a
biological cell.

This application can only be evolved using a kinetic Monte Carlo (KMC) algorithm. You must thus define a KMC
solver to be used with the application via the solve_style command

The following additional commands are defined by this application:

add_reactiondefine a chemical reaction

add_speciesdefine a chemical species

count specify molecular count of a species

stats output of system info

volume specify volume of the chemical reactor

Restrictions: none

Related commands: none

Default: none

(Gillepsie) Gillespie, J Chem Phys, 22, 403−434 (1976); Gillespie, J Phys Chem, 81, 2340−2361 (1977).

33

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style diffusion command

app_style diffusion/table command

app_style diffusion/nonlinear command

Syntax:

app_style style fraction keyword values ...

style = diffusion or diffusion/table or diffusion/nonlinear•
fraction = fraction of sites to occupy initially•
see the app_style command for additional keywords that can be appended•

Examples:

app_style diffusion 0.2 lattice tri 1.0 50 50
app_style diffusion/nonlinear 0.2 lattice tri 1.0 50 50

Description:

This application performs diffusive hops on a lattice whose sites are partially occupied and partially unoccupied
(vacancies). Thus it can be used to model surface diffusion on a 2d lattice or bulk diffusion on a 3d lattice. It is
equivalent to a 2−state Ising model performing Kawasaki dynamics. Neighboring sites exchange their spins as the
model evolves.

The Hamiltonian representing the energy of an occupied site I for the diffusion and diffusion/table styles is as
follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if site J is occupied and 1 if site J is
vacant. The Hi for a vacant site is 0.

The Hamiltonian representing the energy of an occupied site I for the diffusion/nonlinear style is as follows:

Hi = Eng(Sum_j delta_ij)

where Sum_j is the sum over all its neighbor sites and delta_ij now 1 if site J is occupied and 0 otherwise. Thus
the summation computes the coordination number of site I. Note that this definition of delta is the opposite of how
it is defined for styles diffusion and diffusion/table. The function Eng() is a tabulated function specified by the
user via the ecoord command, which allows the energy to be a non−linear function of coordination number. As
before the Hi for a vacant site is 0.

For all these applications, the energy of the entire system is the sum of Hi over all sites.

The relationship between the 3 variants of app_style diffusion is as follows. Styles diffusion and diffusion/table
are the same except for how events and probabilities are stored and accessed internally. Their results should be
statistically the same, although not exactly the same, due to differences in how events are chosen by random
numbers.

34

http://www.cs.sandia.gov/~sjplimp/spparks.html

Note that the style diffusion/nonlinear should give the same answers (statistically) as diffusion or diffusion/table if
the tabulated function specified by the ecoord command is specified with E_0 = N, E_1 = N−1, ... E_N−1 = 1,
E_N = 0. N = the number of neighbors of each lattice site, i.e. the maximum coordination number. In this
scenario, the energy is effectively a linear function of coordination number, which is the model used by the
diffusion and diffusion/table styles.

Of course, if the specified ecoord values are not specified as a linear function, then the diffusion/nonlinear style
will evolve differently.

These applications are general lattice application; see the app_style commmand for further discussion. The lattice
must be specified by the appended lattice keword with its associated values, as discussed on the doc page for the
app_style command.

This application performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.
Equivalently, an atom hops from an occupied site to a vacancy site.

As explained on this page, these applications can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands. The diffusion style supports both KMC and rKMC options. The
diffusion/table and diffusion/nonlinear styles only support KMC options.

For solution by a KMC algorithm, the possible events an occupied site can perform are swaps with vacant
neighbor sites. The probability of each such event is min[1,exp(−dE/kT)], where dE = Efinal − Einitial. For the
diffusion and diffusion/table styles, E is the sum of the energy for the site and its neighbor. For the
diffusion/nonlinear style, E is the sum of the energy for the site and its neighbor, and also the energy of the
neighbors of each of the 2 sites involved.

For solution by a Metropolis algorithm, the spin is flipped to its opposite state and dE = Efinal − Einitial is
calculated, as is a uniform random number R between 0 and 1. The flip is accepted if R < min[1,exp(−dE/kT)],
else it is rejected.

The following additional commands are defined by these applications. The ecoord command is only defined by
the diffusion/nonlinear application.

dump output of lattice snapshots

ecoord
energy as a function of
coordination

stats output of system info

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style ising, app_style pore

Default: none

35

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style ising command

app_style ising/single command

Syntax:

app_style style keyword values ...

style = ising or ising/single•
see the app_style command for additional keywords that can be appended to the ising style•

Examples:

app_style ising lattice sq/4n 1.0 50 50
app_style ising/single lattice sq/4n 1.0 50 50

Description:

This application evolves a 2−state Ising model, where each lattice site has a spin of 1 or 2. Sites flip their spin as
the model evolves.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

This application performs Glauber dynamics, meaning the spin is flipped on a single site. See app_style diffusion
for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are swapped.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(−dE/kT)], where dE =
Efinal − Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly).

For solution by a rKMC algorithm, the ising and ising/single styles use a different rejection−based algorithm. For
the ising style, the spin is set randomly to 1 or 2. For the ising/single style, the spin is flipped to its opposite value.
In either case, dE = Efinal − Einitial is calculated, as is a uniform random number R between 0 and 1. The new
state is accepted if R < min[1,exp(−dE/kT)].

The following additional commands are defined by this application:

dump output of lattice snapshots

stats output of system info

temperatureset Monte Carlo temperature

36

http://www.cs.sandia.gov/~sjplimp/spparks.html

Restrictions: none

Related commands:

app_style potts

Default: none

37

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style membrane command

Syntax:

app_style membrane w01 w11 mu keyword values ...

membrane = style name of this application•
w01 = sovent−protein interaction energy (typically 1.25)•
w11 = sovent−solvent interaction energy (typically 1.0)•
mu = chemical potential to insert a solvent (typically −2.0)•
see the app_style command for additional keywords that can be appended to the membrane style•

Examples:

app_style membrane 1.25 1.0 −3.0 lattice tri 1.0 100 50

Description:

This application evolves a membrane model, where each lattice site is in one of 3 states: lipid, water, or protein.
Sites flip their state as the model evolves. See the paper of (Sarkisov) for a description of the model and its
applications to porous media. Here it is used to model the state of a lipid membrane around embedded proteins,
such as one enclosing a biological cell.

In the model, protein sites are defined by the inclusion command and never change. The remaining sites are
initially lipid and can flip between solvent and lipid as the model evolves. Typically, water will coat the surface of
the proteins and create a pore in between multiple proteins if they are close enough together.

The Hamiltonian represeting the energy of site I is as follows:

H = − mu x_i − Sum_j (w11 a_ij + w01 b_ij)

where Sum_j is a sum over all the neighbor sites of site I, x_i = 1 if site I is solvent and 0 otherwise, a_ij = 1 if
both the I,J sites are solvent and 0 otherwise, b_ij = 1 if one of the I,J sites is solvent and the other is protein and 0
otherwise. Mu and w11 and w01 are user inputs. As discussed in the paper, this is essentially a lattice gas
grand−canonical Monte Carlo model, which is isomorphic to an Ising model. The mu term is a penalty for
inserting solvent which prevents the system from becoming all solvent, which the 2nd term would prefer.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip from a lipid to fluid state or vice versa. The
probability of the event is min[1,exp(−dE/kT)], where dE = Efinal − Einitial using the Hamiltonian defined above
for the energy of the site, and T is the temperature of the system defined by the temperature command (which
includes the Boltzmann constant k implicitly).

For solution by a Metropolis algorithm, the site is set randomly to fluid or lipid, unless it is a protein site in which
case it is skipped altogether. The energy change dE = Efinal − Einitial is calculated, as is a uniform random
number R between 0 and 1. The new state is accepted if R < min[1,exp(−dE/kT)], else it is rejected.

38

http://www.cs.sandia.gov/~sjplimp/spparks.html

The following additional commands are defined by these applications:

dump output of lattice snapshots

inclusion specify which sites are proteins

stats output of system info

temperatureset Monte Carlo temperature

Restrictions: none

Related commands: none

Default: none

(Sarkisov) Sarkisov and Monson, Phys Rev E, 65, 011202 (2001).

39

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style pore command

app_style pore/nonlinear command

Syntax:

app_style style xc yc zc diameter thickness keyword values ...

style = pore or pore/nonlinear•
xc,yc,zc = coordinates of center point of pore•
diameter = xy diameter of cylindrical pore aligned along z axis•
thickness = z thickness of thin film which the pore spans•
see the app_style command for additional keywords that can be appended•

Examples:

app_style pore 10 10 10 4 10 lattice fcc 1.0 20 20 20

Description:

This application is exactly the same as the app_style diffusion application, except for the way the lattice of
occupied/vacant sites is initialized.

A single cylindrical pore in a thin−film membrane is setup. The pore is aligned with the z−axis and the thin film is
periodic in the x and y dimensions.

The pore style is equivalent to the "app_style diffusion/table" style. The pore/nonlinear style is equivalent to the
"app_style diffusion/nonlinear" style.

The following additional commands are defined by these applications. The ecoord command is only defined by
the pore/nonlinear application.

dump output of lattice snapshots

ecoord
energy as a function of
coordination

stats output of system info

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

app_style diffusion

Default: none

40

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style potts command

app_style potts/neigh command

app_style potts/neighonly command

app_style potts/variable command

Syntax:

app_style style Q keyword values ...

style = potts or potts/neigh or potts/neighonly or potts/variable•
Q = number of spin states•
see the app_style command for additional keywords that can be appended•

Examples:

app_style potts 100 lattice sq/4n 1.0 50 50
app_style potts/neigh 20 lattice sq/4n 1.0 50 50
app_style potts/variable 100 lattice sq/4n 1.0 50 50 site 1 1

Description:

These applications evolve a Q−state Ising model or Potts model, where each lattice site has a spin value from 1 to
Q. Sites flip their spin as the model evolves.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

These applications perform Glauber dynamics, meaning the spin is flipped on a single site. See app_style
diffusion for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are
swapped.

The potts/variable application is identical to the potts application except that the site keyword must be used to
define the per−site quantities stored on the lattice. The site keyword is described with the app_style command.
This application is provided to illustrate how an application is written using user−defined sites via the site
keyword.

As explained on this page, these applications can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(−dE/kT)], where dE =
Efinal − Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly). The KMC

41

http://www.cs.sandia.gov/~sjplimp/spparks.html

algorithm does not allow spin flips known as "wild" flips, even at finite temperature. These are flips to values that
are not equal to any neighbor site value.

For solution by a rKMC algorithm, the various styles use different rejection−based algorithms. For the potts and
potts/variable styles, a random spin from 1 to Q is chosen. For the potts/neigh style, a spin is chosen randomly
from the values held by neighbor sites and a null−bin of a size which extends the possible events up to the
maximum number of neighbors. For example, imagine a site has 12 neighbors and the 12 sites have 4 different
spin values. Then each of the 4 neighbor spin values will be chosen with 1/12 probability and the null bin will be
chosen with 8/12 probability. For the potts/neighonly style, the null bin is discarded, so in this case each of the 4
spin values will be chosen with 1/4 probability. In all the cases, dE = Efinal − Einitial is calculated, as is a
uniform random number R between 0 and 1. The new state is accepted if R < min[1,exp(−dE/kT)], else it is
rejected.

The rKMC algorithm for the potts style does allow spin flips known as "wild" flips. These are flips to values that
are not equal to any neighbor site value. At temperature 0.0 these are effectively disallowed, since they will
increase the energy of the system (except in the uninteresting case when the site already has a spin value not equal
to any neighbor values), but at finite temperature they will have a non−zero probability of occurring.

The following additional commands are defined by these applications:

dump output of lattice snapshots

stats output of system info

temperatureset Monte Carlo temperature

Restrictions: none

Related commands:

app_style ising

Default: none

42

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style potts/pin command

Syntax:

app_style potts/pin Q keyword values ...

potts/pin = application style name•
Q = number of spin states•
see the app_style command for additional keywords that can be appended•

Examples:

app_style potts/pin 100 lattice tri 1.0 50 50

Description:

This application evolves a Q−state Potts model in the presence of pinning sites, which are sites tagged with a spin
value of Q+1 which do not change. Their effect is typically to pin or inhibit grain growth in various ways.

The Hamiltonian representing the energy of site I is as follows:

Hi = Sum_j delta_ij

where Sum_j is a sum over all the neighbor sites of site I and delta_ij is 0 if the spin of sites I and J are the same
and 1 if they are different. The energy of the entire system is the sum of Hi over all sites.

These applications perform Glauber dynamics, meaning the spin is flipped on a single site. See app_style
diffusion for an Ising model which performs Kawasaki dynamics, meaning the spins on two neighboring sites are
swapped.

As explained on this page, this application can be evolved by either a kinetic Monte Carlo (KMC) or rejection
KMC (rKMC) algorithm. You must thus define a KMC solver or sweeping method to be used with the application
via the solve_style or sweep commands.

For solution by a KMC algorithm, a site event is a spin flip and its probability is min[1,exp(−dE/kT)], where dE =
Efinal − Einitial using the Hamiltonian defined above for the energy of the site, and T is the temperature of the
system defined by the temperature command (which includes the Boltzmann constant k implicitly). The KMC
algorithm does not allow spin flips known as "wild" flips, even at finite temperature. These are flips to values that
are not equal to any neighbor site value. The KMC algorithm also does not allow spin flips to a pinned site value.

For solution by a rKMC algorithm, a random spin from 1 to Q is chosen. Note that this does not allow a spin flip
to a pinned site value, since those sites are set to Q+1. When the flip is attempted dE = Efinal − Einitial is
calculated, as is a uniform random number R between 0 and 1. The new state is accepted if R <
min[1,exp(−dE/kT)], else it is rejected.

The rKMC algorithm for the potts style does allow spin flips known as "wild" flips. These are flips to values that
are not equal to any neighbor site value. At temperature 0.0 these are effectively disallowed, since they will
increase the energy of the system (except in the uninteresting case when the site already has a spin value not equal
to any neighbor values), but at finite temperature they will have a non−zero probability of occurring.

43

http://www.cs.sandia.gov/~sjplimp/spparks.html

The following additional commands are defined by this application:

dump output of lattice snapshots

pin create a set of pinned sites

stats output of system info

temperatureset Monte Carlo temperature

Restrictions: none

Related commands:

app_style potts

Default: none

44

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style command

Syntax:

app_style style args keyword values keyword values ...

style = diffusion or ising or pore or potts or membrane or chemistry or test/group

 (see application doc page for additional variants)

•

args = arguments specific to an application

 (see application doc page for details)

•

zero or more keyword/value pairs may be appended•
keyword = lattice or procs or site or input

lattice values = type params
 type = line/2n or sq/4n or sq/8n or tri or sc/6n or sc/26n or fcc or bcc or diamond or random/1d or random/2d or random/3d or file

line/2n params = a nx = 1d regular lattice with 2 neighbors per site
sq/4n params = a nx ny = 2d square lattice with 4 neighbors per site
sq/8n params = a nx ny = 2d square lattice with 8 neighbors per site
tri params = a nx ny = 2d triangular lattice with 6 neighborrs per site

 a = lattice constant
 nx,ny = number of unit cells in each dimension

sc/6n params = a nx ny nz = 3d cubic lattice with 6 neighbors per site
sc/26n params = a nx ny nz = 3d cubic lattice with 26 neighbors per site
fcc params = a nx ny nz = 3d fcc lattice with 12 neighbors per site
bcc params = a nx ny nz = 3d bcc lattice with 8 neighbors per site
diamond params = a nx ny nz = 3d diamond lattice with 4 neighbors per site

 a = lattice constant
 nx,ny,nz = number of unit cells in each dimension

random/1d param = N xbox cutoff = lattice of random 1d points
 N = # of lattice points
 xbox = simulation extent in x
 cutoff = distance cutoff for neighbor connectivity between sites

random/2d param = N xbox ybox cutoff = lattice of random 2d points
 N = # of lattice points
 xbox,ybox = simulation extent in x,y
 cutoff = distance cutoff for neighbor connectivity between sites

random/3d param = N xbox ybox zbox cutoff = lattice of random 3d points
 N = # of lattice points
 xbox,ybox,zbox = simulation extent in x,y,z
 cutoff = distance cutoff for neighbor connectivity between sites

file param = filename = read lattice and connectivity from file
 filename = name of file (see file format below)

procs values = Px Py Pz
 Px,Py,Pz = # of processors assigned to each dimension of lattice

site values = Nint Ndouble
 Nint = # of integer quantites to store per site
 Ndouble = # of double quantites to store per site

input value = infile
 infile = filename for file containing initial state of all lattice sites

•

Examples:

app_style diffusion ... lattice fcc 1.0 100 100 100
app_style ising ... lattice sq/4n 1.0 100 100
app_style ising ... lattice sq/4n 1.0 100 100 input restart.state
app_style pore ... lattice fcc 1.0 100 100 100

45

http://www.cs.sandia.gov/~sjplimp/spparks.html

app_style potts ... lattice file tmp.latttice
app_style potts/variable ... lattice random/2d 1000 10.0 10.0 3.0
app_style membrane ... lattice tri 1.0 100 50
app_style chemistry ...
app_style test/group ...

Description:

This command defines what model or application SPPARKS will run. There are 2 basic kinds of applications:
on−lattice and off−lattice.

Here is the list of on−lattice applications SPPARKS currently includes. See the doc page for each application for
details:

diffusion = vacancy exchange diffusion model•
ising = Ising model•
membrane = membrane model of lipid,water,protein•
pore = surface diffusion around thin−film pore•
potts = Potts model for grain growth•
potts/pin = Potts model with pinning sites•

Here is the list of off−lattice applications SPPARKS currently includes:

chemistry = biochemical reaction networks•
test/group = artificial chemical networks that test solve_style•

The off−lattice applications in SPPARKS can only be evolved via a kinetic Monte Carlo (KMC) solver, specified
by the solve_style command. On−lattice applications can be evolved by either a KMC solver or a rejection kinetic
Monte Carlo (rKMC) solver, specified by the sweep command. Not all on−lattice applications support both
choices.

The KMC algorithm is sometimes called rejection−free KMC or the N−fold way or the Gillespie algorithm in the
MC literature. The application defines a list of "events" and associated rates for each event. The solver chooses
the next event, and the application updates the system accordingly. For off−lattice applications the definition of an
"event" is arbitrary. For on−lattice application zero or more possible events are typically defined for each lattice
site.

The rKMC algorithm picks successive lattice sites via some method (see the sweep command), and an event on
that site which it accepts or rejects. This is sometimes called null−event MC in the literature. The application
again defines the "events" for each site and associated rates which influence the acceptance or rejection.

For both time evolution methods (KMC and rKMC) the rules for how events are defined and are accepted or
rejected are discussed in the doc pages for the individual applications.

Here is a table of the different kinds of solvers and options that can be used for on−lattice applications in
SPPARKS. Serial and parallel refer to running on one or many processors. Sector vs no−sector is what is set by
the sector command. The rKMC options are set by the sweep command.

method serial/no−sectorsserial/sectorsparallel/no−sectorsparallel/sectors

exact KMC yes yes no yes

rKMC random yes yes no yes

rKMC raster yes yes no yes

46

rKMC color yes no yes no
Note that the choice of color can also be color/strict and that masking can also be turned on for rKMC algorithms
via the sweep command if the lo−level application supports it.

For on−lattice applications, there are several keyword/value pairs that may be used as part of the app_style
command.

The lattice keyword must be specified for on−lattice applications as it determines the kind and size of lattice used.
For example,

app_style ising 12345 lattice sq/4n 100 100

means use a 2d square lattice of size 100x100 with 4 neighbors per lattice site. A variety of lattice types and
neighbor stencils can be given as options with the lattice keyword as described above.

The line lattice type is a 1d regular lattice. The sq and sc lattice types are 2d square and 3d cubic lattices. The total
number of lattice sites is one per unit cell, i.e. the product of nx, ny, and nz. The fcc, bcc, and diamond lattice
types are 3d and generate multiple lattice sites per unit cell: 4 per fcc unit cell, 2 per bcc unit cell, and 8 per
diamond unit cell.

The connectivity of these lattice types is as follows:

line/2d = 1d regular lattice with 2 neighbors per site (nearest neighbors)•
sq/4n = 2d square lattice with 4 neighbors per site (nearest neighbors)•
sq/8n = 2d square lattice with 4 neighbors per site (1st and 2nd nearest neighbors)•
tri = 2d triangular lattice with 6 neighbors per site (nearest neighbors)•
sc/6n = 3d cubic lattice with 6 neighbors per site (nearest neighbors)•
sc/26n = 3d cubic lattice with 26 neighbors per site (1st,2nd,3rd nearest neighbors)•
fcc = 3d fcc lattice with 12 neighbors per site (nearest neighbors)•
bcc = 3d fcc lattice with 8 neighbors per site (nearest neighbors)•
diamond = 3d fcc lattice with 4 neighbors per site (nearest neighbors)•

The random lattice options generate a lattice of random points within a 1d, 2d, or 3d box of specified size
(0−xbox,0−ybox,0−zbox). The cutoff criterion is used to assign lattice neighbors to each site.

The file lattice option reads in a lattice and neighbor connectivity from the specified filename. The format of this
file is as follows where the comments (#) are not included in the file, and "vertex" is a lattice site, and an "edge" is
a neighbor connection from one site to another. Typically neighbors should be geometrically close, but that is not
required. Note that a connection between two sites is listed twice, once as edge IJ, and once as edge JI.

comment # 1st line is skipped
 # skipped line
Ndim dimension # Ndim = 1 or 2 or 3
N vertices # N = number of vertices
M max connectivity # M = maximum number of edges for any vertex
X1 X2 xlo xhi # X1,X2 = x bounds of box that encloses lattice
Y1 Y2 xlo xhi # y bounds (only if Ndim > 1)
Z1 Z2 zlo zhi # z bounds (only if Ndim = 3)
 # skipped line
Vertices
 # skipped line
1 x y z # ID, x, y, z for each vertex
2 x y z # no y value if dim = 1, no z value if dim = 2
...
N x y z # N lines in this section

47

 # skipped line
Edges
 # skipped line
1 n1 n2 n3 ... # ID, list of IDs for neighbor connections
1 n1 n2 n3 ... # can be different number of connections (up to M) for each vertex
...
N n1 n2 n3 ... # N lines in this section

For on−lattice applications, by default SPPARKS will decide how to partition the simulation domain across
processors in order to minimize communication of lattice sites. Typically this will create a 2d grid of processors
for 2d lattices, and a 3d grid of processors for 3d lattices. You can override the default and specify your own grid
of Px by Py by Pz processors. For 2d lattices, Pz must be 1. For 1d lattices Py and Pz must be 1. If procs 0 0 0 is
specified, then SPPARKS will decide the partitioning.

For on−lattice applications, by default each lattice site stores a single integer value. By specifying site, multiple
integer and or double values can be stored on each site and accessed/updated by your application. For example, an
integer flag could be stored for the type of lattice site and one or more doubles could store the state of the site. If
site 0 0 is specified, then the default of a single integer per site is used.

For on−lattice applications, you can initialize the values stored on each lattice site explicitly by using the input
keyword. This can be useful for restarting a simulation from the dump file generated by a previous simulation.
See the "dump2input.py" script in the tools directory for a way to convert a dump file to the input format
described below.

Normally, if the input keyword is not used, the application will initialize the lattice in some random manner.

The file specified with the input keyword should have the following format. As before, the comments (#) need not
be included in the file.

comment # 1st line is skipped
Nsite nvalue # Nsite = total # of lattice sites, nvalue = values/site
 # skipped line
1 value1 value2 ...
2 value1 value2 ...
...
Nsites value1 value2 ... # Nsite lines

In the body of the file, there is one line per lattice site. These lines can be in any order. The first field on the line is
the ID of the site, which should be an integer from 1 to Nsite. There should be "nvalue" remaining fields on each
line. These values are assigned to that site. How many values there should be (nvalue) depends on the application.
For those with a single integer value (Nint = Ndouble = 0, nvalue = 1), just list that value. If the site keyword is
used (Nint and/or Ndouble != 0, nvalue = Nint+Ndouble), then list the integer value(s) first, followed by the
double value(s).

Restrictions: none

Related commands: none

Default:

There is no default for the lattice keyword. It must be specified for on−lattice applications. The default value for
the procs keyword are 0 0 0. The default values for the site keyword are 0 0.

48

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style surface command

Syntax:

app_style surface keyword values ...

surface = application style name•
zero or more keyword/value pairs may be appended•
keyword = xcos or zcos or yfix or lattice

xcos values = yfoot yheight xmin xmax
zcos values = yfoot yheight zmin zmax
yfix values = ymax
lattice values = type params

 type = sq/4n or sq/8n or tri or sc/6n or sc/26n or fcc or bcc or diamond or random/2d or random/3d or file
sq/4n params = a nx ny = 2d square lattice with 4 neighbors per site
sq/8n params = a nx ny = 2d square lattice with 8 neighbors per site
tri params = a nx ny = 2d triangular lattice with 6 neighborrs per site

 a = lattice constant
 nx,ny = number of unit cells in each dimension

sc/6n params = a nx ny nz = 3d cubic lattice with 6 neighbors per site
sc/26n params = a nx ny nz = 3d cubic lattice with 26 neighbors per site
fcc params = a nx ny nz = 3d fcc lattice with 12 neighbors per site
bcc params = a nx ny nz = 3d bcc lattice with 8 neighbors per site
diamond params = a nx ny nz = 3d diamond lattice with 4 neighbors per site

 a = lattice constant
 nx,ny,nz = number of unit cells in each dimension

random/2d param = N xbox ybox cutoff = lattice of random 2d points
 N = # of lattice points
 xbox,ybox = simulation extent in x,y
 cutoff = distance cutoff for neighbor connectivity between sites

random/3d param = N xbox ybox zbox cutoff = lattice of random 3d points
 N = # of lattice points
 xbox,ybox,zbox = simulation extent in x,y,z
 cutoff = distance cutoff for neighbor connectivity between sites

file param = filename = read lattice and connectivity from file
 filename = name of file (see file format below)

•

see the app_style command for additional keywords that can be appended•

Examples:

app_style surface xcos 51.1 0.0 0.0 40.0 & zcos 100.0 5.0 0.0 40.0 & yfix 1.0 & lattice tri 2.42 20 20

Description:

This application sets up a y−surface and simulates the evolution of the surface. The keyword xcos means that the
surface is cosine−shape in the x−direction. The parameters yfoot, yheight, xmin, and xmax represents respectively
the bottom y coordinate, the height in y direction, and the x−coordinates of the left and the right valleys of the
cosine function so that sites above the function is un−occupied. The keyword zcos and its parameters have similar
meanings except that they are applied in the z−direction. The keyword yfix has an argument ymax. Any species
below is not allowed to move so that only the top surface is simulated.

The energy of the system is expressed as a pairwise summation of the bonding energy E_b = bondener:

E = 0.5 Sum_i Sum_j, j!=i E_b

49

http://www.cs.sandia.gov/~sjplimp/spparks.html

Users should supply the bonding energy in their input file. For example:

bondener value

Note that the value should be negative in the definition here as formation of bonds reduces the energy.

As explained on this page, these applications can be evolved by either a kinetic Monte Carlo (KMC) or
Metropolis rejection−based algorithm. You must thus define a sweeping method and/or KMC solver to be used
with the application via the sweep_style and solve_style commands.

For solution by a KMC algorithm, the possible events a occupied site i can perform are (a) regular jumps where
its occupant hops to a nearest neighbor vacant site j, or (b) Schwoebel jumps where the occupant at i jumps
through a nearest vacant site j1 to a second nearest vacant site k around an occupied nearest site j2. The
probability for an event to occur is proportational to the corresponding jump frequency \Gamma. This in turn is
determined by a energy barrier Q = ebarrier for regular jumps and Q = eSchwoebel for Schwoebel jumps, the
atom vibration frequency \nu = vibrafreq, and the energy difference before and after the jump, dE = Efinal −
Einitial. For dE <= 0, \Gamma = \nu exp(−Q/kT), and for dE > 0, \Gamma = \nu exp−(Q+dE)/kT, where k is
Boltzmann constant and T is temperature (in unit K). The energy difference can be conveniently calculated as dE
= E_b * (N_j − N_i), where N_j and N_i are total numbers if occupied nearest neighbor sites at site j and i
respectively. User should supply values of vibrafreq, ebarrier, and eSchwoebel using the following commands in
the input file:

vibrafreq value
ebarrier value Nmin_to
eSchwoebel value Nmax_from Nmin_to

Here valus are the values for the corresponding parameters. For ebarrier, Nmin_to is an integer number used to
control the jump. When the total number of nearest occupied neighbors at destination is less than Nmin_to, the
jump is not allowed. For eSchwoebel, Nmax_from and Nmin_to are two integer numbers used to control the
jump. When the total number of nearest occupied neighbors at origin is larger than Nmax_from or when the the
total number of nearest occupied neighbors at destination is less than Nmin_to, the jump is not allowed. Nmin_to
= 0 means that no constraints is imposed on the jumps, Nmin_to = 1 would disallow evaporation, Nmin_to = 3 (2
in 2D) would mean that atom always jump to a stable cradle site, etc. Similarly, large Nmax_from value (e.g.,
Nmax_from = 11) would mean that atoms that are not on the surface cannot make Schewoebel jumps, etc. Future
work will implement energy barrier tables so that each of the jumps is associated with a separate energy barrier.

For solution by a Metropolis algorithm, the spin is flipped to its opposite state and dE = Efinal − Einitial is
calculated, as is a uniform random number R between 0 and 1. The flip is accepted if R < min[1,exp(−dE/kT)],
else it is rejected.

The following additional commands are defined by this application.

dump output of lattice snapshots

ecoord
energy as a function of
coordination

stats output of system info

temperature set Monte Carlo temperature

Restrictions: none

Related commands:

50

app_style diffusion

Default: none

51

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style test/group command

Syntax:

app_style test/group N Nmax pmax pmin delta keyword value

test/group = application style name•
N = # of events to choose from•
Mmax = max number of dependencies for each event•
pmax = max probability•
pmin = min probability•
delta = percentage adjustment factor for dependent probabilities•
zero or more keyword/value pairs may be appended•
keyword = lomem

lomem value = yes or no

•

Examples:

app_style test/group 10000 30 1.0 1.0e−6 5
app_style test/group 10000 30 1.0 1.0e−9 10 lomem yes

Description:

This application creates and evolves an artificial network of coupled events to test the performance and scalability
of various kinetic Monte Carlo solvers. See the paper by (Slepoy) for additional details on how it has been used.

The set of coupled events can be thought of as a reaction network with N different chemical rate equations or
events to choose from. Each equation is coupled to M randomly chosen other equations, where M is a uniform
random number from 1 to Mmax. In a chemical reaction sense it is as if an executed reaction creates M product
molecules, each of which is a reactant in another reaction, affecting its probability of occurrence.

Initially, the maximum and minimum probability for each event is an exponentially distributed random value
between pmax and pmin. If solve_style group is used, these values should be the same as the pmax and pmin used
as parameters in that command. Pmin must be greater than 0.0.

As events are executed, the artificial network updates the probabilities of dependent reactions directly by
adjusting their probability by a uniform random number betwee −delta and +delta. Since delta is specified as a
percentatge, this means pold * (1 − delta/100) <= pnew <= pold * (1 + delta/100). Delta must be less than 100.

If the lomem keyword is set to no, then the random connectivity of the network is generated beforehand and
stored. This is faster when events are executed but limits the size of problem that will fit in memory. If lomem is
set to yes, then the connectivity is generated on the fly, as each event is executed.

This application can only be evolved using a kinetic Monte Carlo (KMC) algorithm. You must thus define a KMC
solver to be used with the application via the solve_style command

When the run command is used with this application it sets the number of events to perform, not the time for the
run. E.g.

run 10000

52

http://www.cs.sandia.gov/~sjplimp/spparks.html

means to perform 10000 events, not to run for 10000 seconds.

The following additional command is defined by this application:

statsoutput of system info
Restrictions: none

Related commands:

solve_style group

Default:

The default value is lomem = no.

(Slepoy) Slepoy, Thompson, Plimpton, J Chem Phys, 128, 205101 (2008).

53

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

clear command

Syntax:

clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all data, restores all settings to their default values, and frees all memory allocated by
SPPARKS. Once a clear command has been executed, it is as if SPPARKS were starting over, with only the
exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

54

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

count command

Syntax:

count species N

species = ID of chemical species•
N = count of molecules of this species•

Examples:

count kinase 10000
count NFkB−IKK 300

Description:

This command sets the molecular count of a chemical species for use in the app_style chemistry application.

The species ID can be any string defined by the add_species command.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry, add_species, add_reaction

Default:

The count of a defined species is 0 unless set via this command.

55

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

diag_style cluster command

Syntax:

diag_style cluster keyword value keyword value ...

cluster = style name of this diagnostic•
zero or more keyword/value pairs may be appended•
see the diag_style command for additional keywords that can be appended to a diagnostic command and
which must appear before these keywords

•

keyword = filename or dump

filename value = name
 name = name of file to write clustering results to

dump value = style filename
 style = standard or opendx
 filename = file to write viz data to

•

Examples:

diag_style cluster
diag_style cluster stats no delt 1.0 filename cluster3d.a.0.1.dat dump opendx cluster3d.a.0.1.dump

Description:

The cluster diagnostic computes a clustering analysis on all lattice sites in the system, identifying geometric
groupings of identical spin values, e.g. a grain in a grain growth model. The total number of clusters is printed as
stats output via the stats command.

Clustering uses a connectivity definition provided by the application (e.g. sites are adjacent and have same spin
value) to identify the set of connected clusters.

The variants cluster, cluster2d, and cluster3d are used with applications based on lattice, lattice2d, and lattice3d,
respectively.

The filename keyword allows an output file to be specified. Every time the cluster analysis is performed, the key
properties of each cluster are appended to this file. The output format is:

Clustering Analysis for Lattice (diag_style cluster) nglobal = nprocs =

−− Time = ncluster = id ivalue dvalue size

cluster_id is an arbitrary integer assigned uniquely to each cluster. It will be different for different numbers of
processors.

ivalue is an application−specific integer associated with each cluster. For lattice applications, it is the spin value
of all sites in the cluster dvalue is an application−specific double associated with each cluster. size is the numbers
of sites in the cluster.

The dump keyword causes the cluster ID for each site to be printed out in snapshot format which can be used for
visualization purposes. The cluster IDs are arbitrary integers such that two sites have the same ID if and only if

56

http://www.cs.sandia.gov/~sjplimp/spparks.html

they belong to the same cluster. The standard setting generates LAMMPS−style. For cluster2d and cluster3d
styles only two values are printed for each site: site index and cluster ID. For the cluster style, three additional
values are printed: the x, y, and z coordinate of the site (for 2d lattices, z=0). These files can be visualized with
various tools in the LAMMPS package and the Pizza.py package.

The opendx keyword generates a set of files that can be read by the OpenDX script called aniso0.net to visualize
the clusters in 3D. The filenames are composed of the input filename, followed by a sequential number, followed
by '.dx'. Because the OpenDX format assumes a particular ordering of the sites, the opendx style can only be used
with square and simple cubic lattices.

Restrictions:

This diagnostic can only be used for on−lattice applications.

Applications need to provide push_connected_neighbors() and connected_ghosts() functions which are called by
this diagnostic. If they are not defined, SPPARKS will print an error message.

Related commands:

diag_style, stats

Default: none

57

http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

diag_style energy command

Syntax:

diag_style energy keyword value keyword value ...

energy = style name of this diagnostic•
see the diag_style command for additional keywords that can be appended to a diagnostic command•

Examples:

diag_style energy

Description:

The energy diagnostic computes the total energy of all lattice sites in the system. The energy is printed as stats
output via the stats command.

Restrictions:

This diagnostic can only be used for on−lattice applications.

Related commands:

diag_style, stats

Default: none

58

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

diag_style eprof3d command

Syntax:

diag_style eprof3d keyword value keyword value ...

eprof3d = style name of this diagnostic•
zero or more keyword/value pairs may be appended•
see the diag_style command for additional keywords that can be appended to a diagnostic command and
which must appear before these keywords

•

keyword = axis or filename or boundary

axis value = x or y or z
 x,y,z = which axis to measure energy profile with respect to

filename value = name
 name = name of file to write results to

boundary value = none

•

Examples:

diag_style eprof3d stats no delt 0.1 axis x filename eprof3d.dat
diag_style eprof3d filename eprof3d.dat boundary

Description:

The eprof3d diagnostic computes a one−dimensional average energy profile for all the lattice sites in the system.

The axis keyword specifices which axis to use as the profile coordinate.

The filename keyword allows a file to be specified which output is written to.

If the boundary keyword is used, the average energy is provided as a function of distance from the nearest sector
boundary. In this case, the overall average energy and the average energy immediately to the left and right of the
sector boundary is printed as stats output via the stats command. Also, in this case, the axis keyword has no effect.

If the boundary keyword is not used, then only the overall average energy is printed as stats output via the stats
command.

Restrictions:

As described by the app_style command, on−lattice applications use one of 3 styles of lattice: general, 2d, or 3d.
For this diagnostic only applications on 3d lattices are currently supported.

Related commands:

diag_style, stats

Default: none

59

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

diag_style command

Syntax:

diag_style style keyword value keyword value ...

style = cluster or energy•
zero or more keyword/value pairs may be appended

keyword = stats or delay or delt or logfreq
stats values = yes or no

 yes/no = provide output to stats line
delay values = tdelay

 tdelay = delay evaluating diagnostic until at least this time
delt values = delta

 delta = time increment between evaluations of the diagnostic (seconds)
logfreq values = N factor

 N = number of repetitions per interval
 factor = scale factor between interval

•

see doc pages for individual diagnostic commands for additional keywords − diagnostic−specific
keywords must come after any other standard keywords

•

Examples:

diag_style cluster stats no delt 1.0
diag_style eprof3d stats no delt 0.01 logfreq 7 10.0
diag_style energy2d

Description:

This command invokes a diagnostic calculation. Currently, diagnostics can only be defined for on−lattice
applications. See the app_style command for an overview of such applications.

The diagnostics currently available are:

cluster = grain size statistics for general lattices•
energy = compute energy of entire system for general lattices•

Diagnostics may provide one or more values that are appended to other statistical output and printed to the screen
and log file via the stats command. This is stats output. In addition, the diagnostic may write more extensive
output to its own files if requested by diagnostic−specific keywords.

The stats keyword controls whether or not the diagnostic appends values to the statistical output. If stats is set to
yes, then none of the other keywords can be used, since the frequency of the stats output will determine when the
diagnostic is called.

If stats is set to no, then the other keywords can be used, since presumably the diagnostic will create its own
output files. The delt keyword specificies Delta = the interval of time between each diagnostic calculation.
Similarly, the logfreq keyword will cause the diagnostic to run at varying intervals during the course of a
simulation. There will be N outputs per interval where the size of each interval scales up by factor each time.
Delta is the time between outputs in the first (smallest) interval.

60

http://www.cs.sandia.gov/~sjplimp/spparks.html

For example, this command

diag_style energy stats no delt 0.1 logfreq 7 10.0

will perform its computation at these times:

t = 0, 0.1, 0.2, ..., 0.7, 1, 2,, 7, 10, 20,

This command

diag_style energy stats no delt 0.1 logfreq 1 2.0

will perform its computation at these times:

t = 0, 0.1, 0.2, 0.4, 0.8, 1.6, ...

The delay keyword specifies the shortest time at which the diagnostic can be evaluated. This is useful if it is
inconvenient to evaluate the diagnostic at time t=0.

Restrictions: none

Related commands:

stats

Default:

The stats setting is yes.

61

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

dump command

Syntax:

dump delta filename keyword values field1 field2 ...

delta = time increment between dumps (seconds)•
filename = name of file to dump snapshots to•
keyword = delay or logfreq or mask

delay values = tdelay
 tdelay = delay dump until at least this time

logfreq values = N factor
 N = number of repetitions per interval
 factor = scale factor between interval

mask values = yes or no
 yes/no = suppress output of lattice sites with zero energy

•

field = id or lattice or x or y or z or energy or propensity or iN or dN•

Examples:

dump 0.25 tmp.dump
dump 5.0 snap.ising id lattice energy
dump 1.0 snap.lattice logfreq 9 10.0 id i1 i2 x y z

Description:

Dump snapshots of the state of the lattice to a file at intervals of delta during a simulation. The quantities printed
are obtained from the application. Only lattice−based applications support dumps since what is output is one line
per lattice site.

Using the logfreq keyword will produce statistical output at varying intervals during the course of a simulation.
There will be N outputs per interval where the size of each interval scales up by factor each time. Delta is the time
between outputs in the first (smallest) interval.

For example, this command

dump 0.1 snap.lattice logfreq 7 10.0 id i1 i2 x y z

will dump snapshots at these times:

t = 0, 0.1, 0.2, ..., 0.7, 1, 2,, 7, 10, 20,

This command

dump 0.1 snap.lattice logfreq 1 2.0 id i1 i2 x y z

will dump snapshots at these times:

t = 0, 0.1, 0.2, 0.4, 0.8, 1.6, ...

By default (if no fields are listed), the output values for each site are the "id lattice x y z". This is in the format of
a LAMMPS dump file which can thus be read−in by the Pizza.py toolkit, converted to other formats, or used for

62

http://www.cs.sandia.gov/~sjplimp/spparks.html
http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html

visualization. An important modification to the LAMMPS−style header for each snapshot is the addition of real
time to the line containing the snapshot number:

ITEM: TIMESTEP TIME 100 3.23945

Setting the mask keyword to yes will suppress output for sites whose energy is zero. The reduced number of sites
for that snapshot will be reflected in the header line for the number of atoms/sites.

ITEM: NUMBER OF ATOMS 314159

If fields are listed then only those quantities will be printed for each lattice site.

The id is a unique integer ID for each site.

The lattice value is typically the integer state of the lattice, e.g. the spin value, assuming the application uses the
lattice array. Some applications store multiple values per lattice site; see the site option of the app_style
command. You can specify these values be dumped as iN or dN, where i = integer, d = double, and N = which
value to print (1,2,3,...).

The x, y, z values are the coordinates assigned to the lattice site. The energy value is what is computed by the
energy() function in the application. Likewise for the propensity value which can be thought of as the relative
probablity for that site to perform a KMC event. Note that if you are doing Metropolis MC and not kinetic MC, no
propensity is defined.

When running in parallel, the order of sites as printed to the dump file will be in chunks by processor, not ordered
by ID. The order will be the same in every snapshot.

Restrictions:

This command can only be used as part of the lattice−based applications. See the app_style command for further
details.

Related commands:

stats

Default: none

63

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether SPPARKS echoes each input script command to the screen and/or log file as it
is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

Restrictions: none

Related commands: none

Default:

echo log

64

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

ecoord command

Syntax:

ecoord N eng

N = coordination number•
eng = energy of site with this coordination number (energy units)•

Examples:

ecoord 8 5.6
ecoord 0 1.0e20

Description:

This command sets the energy of an occupied site in a lattice as a function of coordination number, where
coordination = the number of occupied neighbor sites. Typically this command should be used Nmax+1 times
with N varying from 0 to Nmax+1, when Nmax is the number of neighbor sites for each lattice site.

The eng value should be in the energy units defined by the application's Hamiltonian and should be consistent
with the units used in any temperature command.

Restrictions:

This command can only be used as part of the app_style diffusion/nonlinear or app_style pore/nonlinear
applications.

Related commands:

app_style diffusion/nonlinear

Default: none

65

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

if command

Syntax:

if value1 operator value2 then command1 else command2

value1 = 1st value•
operator = "" or ">=" or "==" or "!="•
value2 = 2nd value•
then = required word•
command1 = command to execute if condition is met•
else = optional word•
command2 = command to execute if condition is not met (optional argument)•

Examples:

if ${steps} > 1000 then exit
if $x <= $y then "print X is smaller = $x" else "print Y is smaller = $y"
if ${eng} > 0.0 then "timestep 0.005"
if ${eng} > ${eng_previous} then "jump file1" else "jump file2"

Description:

This command provides an in−then−else test capability within an input script. Two values are numerically
compared to each other and the result is TRUE or FALSE. Note that as in the examples above, either of the values
can be variables, as defined by the variable command, so that when they are evaluated when substituted for in the
if command, a user−defined computation will be performed which can depend on the current state of the
simulation.

If the result of the if test is TRUE, then command1 is executed. This can be any valid SPPARKS input script
command. If the command is more than 1 word, it should be enclosed in double quotes, so that it will be treated as
a single argument, as in the examples above.

The if command can contain an optional "else" clause. If it does and the result of the if test is FALSE, then
command2 is executed.

Note that if either command1 or command2 is a bogus SPPARKS command, such as "exit" in the first example,
then executing the command will cause SPPARKS to halt.

Restrictions: none

Related commands:

variable

Default: none

66

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading SPPARKS commands from that file. When the
new file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input script
A includes script B, and B includes A, then SPPARKS could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, jump

Default: none

67

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

inclusion command

Syntax:

inclusion x y z r

x,y,z = position of center of protein inclusion•
r = radius of the protein•

Examples:

inclusion 10 12 0.0 2.0
inclusion 10 12 5.4 5.0

Description:

This command defines protein sites on a lattice and can only be used by app_style membrane applications.

Think of the protein as a sphere (or circle) centered at x,y,z and with a radius of r. All lattice sites within the
sphere (or circle) will be flagged as protein (as opposed to lipid or solvent). For lattices with a 2d geometry, the z
value should be speficied as 0.0.

Restrictions: none

This command can only be used as part of the app_style pore applications.

Related commands:

app_style membrane

Default: none

68

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

jump command

Syntax:

jump file label

file = filename of new input script to switch to•
label = optional label within file to jump to•

Examples:

jump newfile
jump in.run2 runloop

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
SPPARKS commands from that file. The original file is not returned to, although by using multiple jump
commands it is possible to chain from file to file or back to the original file.

Optionally, if a 2nd argument is used, it is treated as a label and the new file is scanned (without executing
commands) until the label is found, and commands are executed from that point forward. This can be used to loop
over a portion of the input script, as in this example. These commands perform 10 runs, each of 10000 steps, and
create 10 dump files named file.1, file.2, etc. The next command is used to exit the loop after 10 iterations. When
the "a" variable has been incremented for the tenth time, it will cause the next jump command to be skipped.

variable a loop 10
label loop
run 5.0
next a
jump in.lj loop

If the jump file argument is a variable, the jump command can be used to cause different processor partitions to
run different input scripts. In this example, SPPARKS is run on 40 processors, with 4 partitions of 10 procs each.
An in.file containing the example variable and jump command will cause each partition to run a different
simulation.

mpirun −np 40 lmp_ibm −partition 4x10 −in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Restrictions:

If you jump to a file and it does not contain the specified label, SPPARKS will come to the end of the file and
exit.

Related commands:

variable, include, label, next

Default: none

69

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

label command

Syntax:

label ID

ID = string used as label name•

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump command was used previously, this does
nothing. But if a jump command was used with a label argument to begin invoking this script file, then all
command lines in the script prior to this line will be ignored. I.e. execution of the script will begin at this line.
This is useful for looping over a section of the input script as discussed in the jump command.

Restrictions: none

Related commands: none

Default: none

70

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

log command

Syntax:

log file

file = name of new logfile•

Examples:

log log.equil

Description:

This command closes the current SPPARKS log file, opens a new file with the specified name, and begins
logging information to it. If the specified file name is none, then no new log file is opened.

If multiple processor partitions are being used, the file name should be a variable, so that different processors do
not attempt to write to the same log file.

The file "log.spk" is the default log file for a SPPARKS run. The name of the initial log file can also be set by the
command−line switch −log. See this section for details.

Restrictions: none

Related commands: none

Default:

The default SPPARKS log file is named log.spk

71

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

next command

Syntax:

next variables

variables = one or more variable names•

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the variable command. It assigns the next value to the variable
from the list of values defined for that variable by the variable command. Thus when that variable is subsequently
substituted for in an input script command, the new value is used.

See the variable command for info on how to define and use different kinds of variables in SPPARKS input
scripts. If a variable name is a single lower−case character from "a" to "z", it can be used in an input script
command as $a or $z. If it is multiple letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then all must be of the same variable style:
index, loop, universe, or uloop. An exception is that universe− and uloop−style variables can be mixed in the
same next command. Equal− or world−style variables cannot be incremented by a next command. All the
variables specified are incremented by one value from their respective lists.

When any of the variables in the next command has no more values, a flag is set that causes the input script to
skip the next jump command encountered. This enables a loop containing a next command to exit.

When the next command is used with index− or loop−style variables, the next value is assigned to the variable for
all processors. When the next command is used with universe− or uloop−style variables, the next value is
assigned to whichever processor partition executes the command first. All processors in the partition are assigned
the same value. Running SPPARKS on multiple partitions of processors via the "−partition" command−line
switch is described in this section of the manual. Universe− and uloop−style variables are incremented using the
files "tmp.spparks.variable" and "tmp.spparks.variable.lock" which you will see in your directory during such a
SPPARKS run.

Here is an example of running a series of simulations using the next command with an index−style variable. If this
input script is named in.polymer, 8 simulations would be run using data files from directories run1 thru run8.

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_data data.polymer
run 10000
shell cd ..
clear
next d
jump in.polymer

72

http://www.cs.sandia.gov/~sjplimp/spparks.html

If the variable "d" were of style universe, and the same in.polymer input script were run on 3 partitions of
processors, then the first 3 simulations would begin, one on each set of processors. Whichever partition finished
first, it would assign variable "d" the 4th value and run another simulation, and so forth until all 8 simulations
were finished.

Jump and next commands can also be nested to enable multi−level loops. For example, this script will run 15
simulations in a double loop.

variable i loop 3
variable j loop 5
clear
...
read_data data.polymer.ij
print Running simulation $i.$j
run 10000
next j
jump in.script
next i
jump in.script

Restrictions: none

Related commands:

jump, include, shell, variable,

Default: none

73

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

pin command

Syntax:

inclusion fraction

fraction = fraction of sites (0 to 1) to convert to pinned sites•

Examples:

pin 0.1

Description:

This command converts sites on a lattice to pinned sites by setting their spin value to Q+1, where Q is defined by
a Potts model. This command can only be used by the app_style potts/pin application.

Pinned sites are chosen randomly until the desired fraction of changed sites is achieved. The selection is done in a
way that should be independent of the number of processors used to run a particular simulation.

Restrictions: none

This command can only be used as part of the app_style potts/pin applications.

Related commands:

app_style potts/pin

Default: none

74

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

print command

Syntax:

print string

string = text string to print. may contain variables•

Examples:

print "Done with equilibration"
print "The system temperature is now $t"

Description:

Print a text string to the screen and logfile. The text string must be a single argument, so it should be enclosed in
double quotes if it is more than one word. If variables are included in the string, they will be evaluated and their
current values printed.

If you want the print command to be executed multiple times (with changing variable values) then the print
command could appear in a section of the input script that is looped over (see the jump and next commands).

See the variable command for a description of equal style variables which are typically the most useful ones to
use with the print command. Equal−style variables can calculate formulas involving mathematical operations, or
references to other variables.

Restrictions: none

Related commands:

variable

Default: none

75

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

reset_time command

Syntax:

reset_time time

time = new time•

Examples:

reset_time 0.0
reset_time 100.0

Description:

Set the current time to the specified value. This can be useful if a preliminary run was performed and you wish to
reset the time before performing a subsequent run.

Restrictions: none

Related commands: none

Default: none

76

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

run command

Syntax:

run delta keyword values ...

delta = run simulation for this amount of time (seconds)•
zero or more keyword/value pairs may be appended•
keyword = upto or pre or post

upto value = none
pre value = no or yes
post value = no or yes

•

Examples:

run 100.0
run 10000.0 upto
run 1000 pre no post yes

Description:

This command runs a Monte Carlo application for the specified number of seconds of simulation time. If multiple
run commands are used, the simulation is continued, possibly with new settings which were specified between the
successive run commands.

The application defines Monte Carlo events and probabilities which determine the amount of physical time
associated with each event.

A value of delta = 0.0 is acceptable; only the status of the system is computed and printed without making any
Monte Carlo moves.

The upto keyword means to perform a run starting at the current time up to the specified time. E.g. if the current
time is 10.0 and "run 100.0 upto" is used, then an additional 90.0 seconds will be run. This can be useful for very
long runs on a machine that allocates chunks of time and terminate your job when time is exceeded. If you need to
restart your script multiple times (reading in the last restart file), you can keep restarting your script with the same
run command until the simulation finally completes.

The pre and post keywords can be used to streamline the setup, clean−up, and associated output to the screen that
happens before and after a run. This can be useful if you wish to do many short runs in succession (e.g.
SPPARKS is being called as a library which is doing other computations between successive short SPPARKS
runs).

By default (pre and post = yes), SPPARKS initializes data structures and computes propensities before every run.
After every run it gathers and prints timings statistics. If a run is just a continuation of a previous run, the data
structure initialization is not necessary. So if pre is specified as no then the initialization is skipped. Propensities
are still re−computed since commands between runs or a driver program may have changed the system, e.g. by
altering lattice values. Note that if pre is set to no for the very 1st run SPPAKRS performs, then it is overridden,
since the initialization must be done.

If post is specified as no, the full timing summary is skipped; only a one−line summary timing is printed.

77

http://www.cs.sandia.gov/~sjplimp/spparks.html

Restrictions: none

Related commands: none

Default:

The option defaults are pre = yes and post = yes.

78

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

sector command

Syntax:

sector flag keyword value ...

flag = yes or no or N where N = 2,4,8•
zero or more keyword/value pairs may be appended•
keyword = tstop or nstop

tstop value = dt
 dt = elapsed time for events to perform within sector (seconds)

nstop value = N
 N = average number of events per site to perform within sector

•

Examples:

sector no
sector yes
sector 4
sector yes nstop 0.5
sector yes tstop 5.0

Description:

This command partitions the portion of the simulation domain owned by each processor into sectors or
sub−domains. It can only be used for on−lattice applications. Typically, it is used in a parallel simulation, to
enable parallelism, but it can also be used on a single processor.

If sectoring is enabled via the yes setting, then for 1d lattices, each processor's sub−domain is partioned into 2
halves, for 2d lattices, each processor's sub−domain is partitioned into 4 quadrants, and for 3d lattices it is
partitioned into 8 octants. If the N setting is used instead, then the number of sectors can be specified directly.
This may be useful in some models to reduce communication. A 3d lattice can use 2 (x only) or 4 sectors (x and
y), instead of the default 8 (x and y and z). A 2d lattice can use 2 sectors (x only), instead of the default 4 (x and
y). Note that if no sectors are used in a dimension, then there must be only one processor assigned to that
dimension of the simulation box (see the app_style procs command). For example, if "sector 2" is used for a 2d
lattice, then the processor layout must be Px1, where P is the total number of processors.

If sectors are turned on, then a kinetic Monte Carlo (KMC) or rejection KMC (rKMC) algorithm is performed in
the following manner. Events or sites are selected within the first sector on each processor, via a solver or
sweeping method. Communication is then done between processors to update sector boundaries. Then all
proecessors move to the next sector, and the process is repeated. Thus a single sweep over the entire lattice is
performed in 2 (or 4 or 8) stages for 1d (of 2d or 3d) lattices, as sectors are processed one at a time, followed by
the appropriate communication. This procedure insure events occurring on one processor do not conflict with
events performed by other processors.

The optional keywords for this command determine how much time is spent on each sector (i.e. how many events
are performed) before moving to the next sector. Note that using sectors turns an exact KMC or rKMC algorithm
into an approximate one, in the spirit of Amar. This is because events are occuring within a sector while the state
of the system on the boundary of the sector is held frozen. If the time−per−sector is too large, this will require less
communication but will induce incorrect dynamics at the sector boundaries. Conversely, if the time−per−sector is
too small, the simulation will perform few events per sector and spend too much time communicating.

79

http://www.cs.sandia.gov/~sjplimp/spparks.html

If the tstop keyword is used, the time per sector is set to the specified value. For a KMC algorithm, events are
performed until this time threshhold is reached. For a rKMC algorithm, a time per attempted event is defined, and
events are attempted until this time threshhold is reached.

If the nstop keyword is used, it sets the average number of events (or attempts) per site. For example, an nstop
value of 2.0 means attempt 2 events per site for an rKMC algorithm. For a KMC algorithm, this is converted into
a time by computing the maximum propensity of all sites within any sector in the simulation domain. In the KMC
case, this means that if the total propensity of the system decreases as the simulation proceeds (e.g. grain growth
occurs), then the effective time per sweep will increase in an adaptive way. Said another way, the number of
events per sweep will remain roughly constant, as the time per event increases. In the rKMC case, the time per
attempt is constant due to the use of a null−bin, so there is no adaptivity.

If neither the tstop or nstop keywords are specified, a default value of nstop = 1.0 is used, meaning one event per
site is performed or attempted in the KMC or rKMC algorithm in each sector. This should give good behavior in
many applications, meaning high accuracy is achieved with good parallel performance due to a modest amount of
communication being performed.

Note that it makes no sense to define tstop and nstop together since they define the time−per−sector in different
ways. If both are used, the last setting takes precedence.

Restrictions:

This command can only be used as part of on−lattice applications as specified by the app_style command.

Related commands:

app_style, solve_style, sweep

Default:

The option defaults are nstop = 1.0.

(Amar) Shin and Amar, Phys Rev B, 71, 125432−1−125432−13 (2005).

80

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

seed command

Syntax:

seed Nvalue

Nvalue = seed for a random number generator (positive integer)•

Examples:

seed 5838959

Description:

This command sets the random number seed for a master random number generator which is used by SPPARKS
to initialize auxiliary random number generators which in turn are used for all operations in the code requiring
random numbers. Thus this command is needed to perform any simulation with SPPARKS.

Restrictions: none

Related commands: none

Default: none

81

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

shell command

Syntax:

shell style args

style = cd or mkdir or mv or rm or rmdir

cd arg = dir
 dir = directory to change to

mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create

mv args = old new
 old = old filename
 new = new filename

rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete

rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete

•

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.lammps hold/log.1
shell rm TMP/file1 TMP/file2

Description:

Execute a shell command. Only a few simple file−based shell commands are supported, in Unix−style syntax.
With the exception of cd, all commands are executed by only a single processor, so that files/directories are not
being manipulated by multiple processors.

The cd style executes the Unix "cd" command to change the working directory. All subsequent SPPARKS
commands that read/write files will use the new directory. All processors execute this command.

The mkdir style executes the Unix "mkdir" command to create one or more directories.

The mv style executes the Unix "mv" command to rename a file and/or move it to a new directory.

The rm style executes the Unix "rm" command to remove one or more files.

The rmdir style executes the Unix "rmdir" command to remove one or more directories. A directory must be
empty to be successfully removed.

Restrictions:

SPPARKS does not detect errors or print warnings when any of these Unix commands execute. E.g. if the
specified directory does not exist, executing the cd command will silently not do anything.

Related commands: none

82

http://www.cs.sandia.gov/~sjplimp/spparks.html

Default: none

83

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

84

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

85

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

solve_style command

Syntax:

solve_style style args keyword value ...

style = linear or tree or group•
linear arg = none tree arg = none group args = hi lo hi,lo = range of allowed probabilities zero or more
keyword/value pairs may be appended

•

keyword = ngroup

ngroup value = N
 N = # of groups to use

•

Examples:

solve_style linear
solve_style tree
solve_style group 1.0 1.0e−6
solve_style group 100.0 1.0 ngroup 10

Description:

Choose a kinetic Monte Carlo (KMC) solver to use in your application. If no sweeper is used then a solver is
required.

A KMC solver picks events for your application to perform from a list of events and their associated probabilities.
It does this using the standard Gillespie or BKL algorithm which also computes a timestep during which the
chosen event occus. The only difference between the various solver styles is the algorithm they use to select
events which affects their speed and scalability as a function of the number of events they choose from. The
linear solver may be suitable for simulations with few events; the tree or group solver should be used for larger
simulations.

The linear style chooses an event by scanning the list of events in a linear fashion. Hence the cost to pick an event
scales as O(N), where N is the number of events.

The tree style chooses an event by creating a binary tree of probabilities and their sums, as in the Gibson/Bruck
implementation of the Gillespie direct method algorithm. Its cost to pick an event scales as O(logN).

The group style chooses an event using the composition and rejection (CR) algorithm described originally in
Devroye and discussed in Slepoy. Its cost to pick an event scales as O(1) as it is a constant time algorithm. It
requires that you bound the hi and lo probabilities for any event that will be registered with the solver. Note that
on−lattice applications typically register the total probability of all a site's events with the KMC solver. The value
of lo must be > 0.0 and lo cannot be >= hi.

By default, the group style will create groups whose boundaries cascade upward in powers of 2 from lo to hi. I.e.
the first group is from lo to 2*lo, the second group is from 2*lo to 4*lo, etc. Note that for hi/lo = 1.0e6, there
would thus be about 20 groups.

If the ngroup keyword is used, then it specifies the number of groups to use between lo and hi and they will be
equal in extent. E.g. for ngroup = 3, the first group is from lo to lo + (hi−lo)/3, the second group is from lo +

86

http://www.cs.sandia.gov/~sjplimp/spparks.html

2*(hi−lo)/3, and the third group is from lo + 2*(hi−lo)/3 to hi.

Restrictions:

The ngroup keyword can only be used with style group.

Related commands:

app_style, sweep_style

Default: none

(Gillepsie) Gillespie, J Chem Phys, 22, 403−434 (1976); Gillespie, J Phys Chem, 81, 2340−2361 (1977).

(BKL) Bortz, Kalos, Lebowitz, J Comp Phys, 17, 10 (1975).

(Gibson) Gibson and Bruck, J Phys Chem, 104, 1876 (2000).

(Devroye) Devroye, Non−Uniform Random Variate Generation, Springer−Verlag, New York (1986).

(Slepoy) Slepoy, Thompson, Plimpton, J Chem Phys, 128, 205101 (2008).

87

http://cg.scs.carleton.ca/~luc/rnbookindex.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

app_style command

Syntax:

app_style style args

style = application style name•
args = args•

Examples:

app_style ising 100 100
app_style potts 1000 1000 4

Description:

This command ...

Restrictions: none

Related commands:

variable, ...

Default: none

88

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

stats command

Syntax:

stats delta keyword values ...

delta = time increment between statistical output (seconds)•
zero or more keyword/value pairs may be appended•
keyword = logfreq

logfreq values = N factor
 N = number of repetitions per interval
 factor = scale factor between interval

•

Examples:

stats 0.1
stats 1.0 logfreq 7 10.0

Description:

Print statistics to the screen and log file every so many seconds during a simulation. A value of 0.0 for delta
means only print stats at the beginning and end of the run.

The quantities printed are elapsed CPU time followed by those provided by the application, followed by those
provided by any diagnostics you have defined.

Typically the application reports only the number of events or sweeps executed, followed by the simulation time,
but other application−specific quantities may also be reported. Quantities such as the total energy of the system
can be included in the output by creating diagnostics via the diag_style command.

Using the logfreq keyword will produce statistical output at varying intervals during the course of a simulation.
There will be N outputs per interval where the size of each interval scales up by factor each time. Delta is the time
between outputs in the first (smallest) interval.

For example, this command

stats 0.1 logfreq 7 10.0

will produce output at these times:

t = 0, 0.1, 0.2, ..., 0.7, 1, 2,, 7, 10, 20,

This command

stats 0.1 logfreq 1 2.0

will produce output at these times:

t = 0, 0.1, 0.2, 0.4, 0.8, 1.6, ...

Restrictions:

89

http://www.cs.sandia.gov/~sjplimp/spparks.html

See the doc pages for quantities provided by particular app_style and diag_style commands for further details.

Related commands:

dump, diag_style

Default:

The default stats increment is delta = 0.0.

90

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

sweep command

Syntax:

sweep style keyword value ...

style = random or raster or color or color/strict•
zero or more keyword/value pairs may be appended•
keyword = mask

mask value = yes or no
 yes/no = mask out sites than cannot change

•

Examples:

sweep random
sweep raster mask yes ...

Description:

Use a rejection kinetic Monte Carlo (rKMC) algorithm for an on−lattice application. If rKMC is not used then a
kinetic Monte Carlo (KMC) algorithm must be used as defined by the solve_style command.

The rKMC algorithm in SPPARKS selects sites on a lattice in an order determined by this command and requests
that the application perform events. The application defines the geometry and connectivity of the lattice, what the
possible events are, and defines their rates and acceptance/rejection criteria.

The ordering of selected sites is also affected by the sector command, which partitions each processor's portion of
the simulation domain into sectors which are quadrants (2d) or octants (3d). In this case, the ordering described
below is within each sector. Sectors are looped over one at a time, interleaved by communication of lattice values
inbetween.

For the random style, sites are chosen randomly, one at a time.

For the raster style, a sweep of the lattice is done, as a loop over all sites in a pre−determined order, e.g. a triple
loop over i,j,k for a 3d cubic lattice.

For the color style, lattice sites are partitioned into sub−groups or colors which are non−interacting in the sense
that events on two sites of the same color can be perfored simultaneously without conflict. This enables
parallelism since events on all sites of the same color can be attempted simultaneously. Similar to sectors, the
colors are looped over, interleaved by communication of lattice values inbetween.

The color/strict style is the same as the color style except that random numbers are generated in a way that is
independent of the processor which generates them. Thus SPPARKS should produce the same answer,
independent of how many processors are used. This can be useful in debugging an application.

If the application supports it, the mask keyword can be set to yes to skip sites which cannot perform an event due
to the current value of the site and its neighbors. Enabling masking should not change the answer given by a
simulation (in a statistical sense); it only offers a computational speed−up. For example, sites in the interior of
grains in a Potts grain−growth model may have no potential of flipping their value. Masking can only be set to yes
if the temperature is set to 0.0, since otherwise there is a finite probability of any site performing an event.

91

http://www.cs.sandia.gov/~sjplimp/spparks.html

Restrictions:

This command can only be used as part of on−lattice applications as specified by the app_style command.

Not all lattice styles and applications support the color and color/strict styles. Not all applications support the
mask option.

Related commands:

app_style, solve_style, sector

Default:

The option defaults are mask = no.

92

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

temperature command

Syntax:

temperature T

T = value of temperature for the Monte Carlo simulation (energy units)•

Examples:

temperature 2.0

Description:

This command sets the temperature as used in various applications. The typical usage would be as part of a
Boltzmann factor that alters the propabilities of event acceptance and rejection.

The units of the specfied temperature should be consistent with how the application defines energy. E.g. if used in
a Boltzmann factor where a kT factor scales the energy of a Hamiltonian defined by the application, then this
command is really defining kT and the specified value should have the units of energy as computed by the
Hamiltonian.

Restrictions: none

This command can only be used as part of applications that allow for a temperature to be specified. See the doc
pages for individual applications defined by the app_style command for further details.

Related commands: none

Default:

The default temperature is 0.0.

93

http://www.cs.sandia.gov/~sjplimp/spparks.html

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

variable command

Syntax:

variable name style args ...

name = name of variable to define•
style = index or loop or world or universe or uloop or equal or atom

index args = one or more strings
loop args = N = integer size of loop
world args = one string for each partition of processors
universe args = one or more strings
uloop args = N = integer size of loop
equal args = one formula containing numbers, math operations, variable references

 numbers = 0.0, 100, −5.4, 2.8e−4, etc
 math operations = (), −x, x+y, x−y, x*y, x/y, x^y,
 sqrt(x), exp(x), ln(x), log(x),
 sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),
 ceil(x), floor(x), round(x)
 other variables = v_abc, v_n

•

Examples:

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable MyValue equal 5.0*exp(v_energy/(v_boltz*v_Temp))
variable beta equal v_temp/3.0
variable temp world 300.0 310.0 320.0 ${Tfinal}
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15

Description:

This command assigns one or more strings to a variable name for evaluation later in the input script or during a
simulation.

Variables can be used in several ways in SPPARKS. A variable can be referenced elsewhere in an input script to
become part of a new input command. For variable styles that store multiple strings, the next command can be
used to increment which string is assigned to the variable. Variables of style equal can be evaluated to produce a
single numeric value which can be output directly via the print command.

In the discussion that follows, the "name" of the variable is the arbitrary string that is the 1st argument in the
variable command. This name can only contain alphanumeric characters and underscores. The "string" is one or
more of the subsequent arguments. The "string" can be simple text as in the 1st example above, it can contain
other variables as in the 2nd example, or it can be a formula as in the 3rd example. The "value" is the numeric
quantity resulting from evaluation of the string. Note that the same string can generate different values when it is
evaluated at different times during a simulation.

IMPORTANT NOTE: When a variable command is encountered in the input script and the variable name has
already been specified, the command is ignored. This means variables can NOT be re−defined in an input script
(with 2 exceptions, read further). This is to allow an input script to be processed multiple times without resetting
the variables; see the jump or include commands. It also means that using the command−line switch −var will
override a corresponding variable setting in the input script.

94

http://www.cs.sandia.gov/~sjplimp/spparks.html

There are two exceptions to this rule. First, variables of style equal ARE redefined each time the command is
encountered. This allows them to be reset, when their formulas contain a substitution for another variable, e.g. $x.
This can be useful in a loop. This also means an equal−style variable will re−define a command−line switch −var
setting, so an index−style variable should be used for such settings instead, as in bench/in.lj.

Second, as described below, if a variable is iterated on to the end of its list of strings via the next command, it is
removed from the list of active variables, and is thus available to be re−defined in a subsequent variable
command.

This section of the manual explains how occurrences of a variable name in an input script line are replaced by the
variable's string. The variable name can be referenced as $x if the name "x" is a single character, or as
${LoopVar} if the name "LoopVar" is one or more characters.

As described below, for variable styles index, loop, universe, and uloop, which string is assigned to a variable can
be incremented via the next command. When there are no more strings to assign, the variable is exhausted and a
flag is set that causes the next jump command encountered in the input script to be skipped. This enables the
construction of simple loops in the input script that are iterated over and then exited from.

For the index style, one or more strings are specified. Initially, the 1st string is assigned to the variable. Each time
a next command is used with the variable name, the next string is assigned. All processors assign the same string
to the variable.

Index style variables with a single string value can also be set by using the command−line switch −var; see this
section for details.

The loop style is identical to the index style except that the strings are the integers from 1 to N. This allows
generation of a long list of runs (e.g. 1000) without having to list N strings in the input script. Initially, the string
"1" is assigned to the variable. Each time a next command is used with the variable name, the next string ("2",
"3", etc) is assigned. All processors assign the same string to the variable.

For the world style, one or more strings are specified. There must be one string for each processor partition or
"world". See this section of the manual for information on running SPPARKS with multiple partitions via the
"−partition" command−line switch. This variable command assigns one string to each world. All processors in the
world are assigned the same string. The next command cannot be used with equal style variables, since there is
only one value per world. This style of variable is useful when you wish to run different simulations on different
partitions.

For the universe style, one or more strings are specified. There must be at least as many strings as there are
processor partitions or "worlds". See this page for information on running SPPARKS with multiple partitions via
the "−partition" command−line switch. This variable command initially assigns one string to each world. When a
next command is encountered using this variable, the first processor partition to encounter it, is assigned the next
available string. This continues until all the variable strings are consumed. Thus, this command can be used to run
50 simulations on 8 processor partitions. The simulations will be run one after the other on whatever partition
becomes available, until they are all finished. Universe style variables are incremented using the files
"tmp.spparks.variable" and "tmp.spparks.variable.lock" which you will see in your directory during such a
SPPARKS run.

The uloop style is identical to the universe style except that the strings are the integers from 1 to N. This allows
generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

For the equal style, a single string is specified which represents a formula that will be evaluated afresh each time
the variable is used. If you want spaces in the string, enclose it in double quotes so the parser will treat it as a

95

single argument. For equal style variables the formula computes a scalar quantity, which becomes the value of the
variable whenever it is evaluated.

Note that equal variables can produce different values at different stages of the input script or at different times
during a run.

The next command cannot be used with equal style variables, since there is only one string.

The formula for an equal variable can contain a variety of quantities. The syntax for each kind of quantity is
simple, but multiple quantities can be nested and combined in various ways to build up formulas of arbitrary
complexity. For example, this is a valid (though strange) variable formula:

variable x equal "2.0 + v_MyTemp / pow(v_Volume,1/3)"

Specifically, an formula can contain numbers, math operations, and references to other variables.

Number 0.2, 100, 1.0e20, −15.4, etc

Math operations
(), −x, x+y, x−y, x*y, x/y, x^y, sqrt(x), exp(x), ln(x), log(x), sin(x), cos(x), tan(x), asin(x),
acos(x), atan(x), ceil(x), floor(x), round(x)

Other variables v_abc, v_n
Math operations are written in the usual way, where the "x" and "y" in the examples above can be another section
of the formula. Operators are evaluated left to right and have the usual precedence: unary minus before
exponentiation ("^"), exponentiation before multiplication and division, and multiplication and division before
addition and subtraction. Parenthesis can be used to group one or more portions of a formula and enforce a
desired order of operations. Additional math operations can be specified as keywords followed by a parenthesized
argument, e.g. sqrt(v_ke). Note that ln() is the natural log; log() is the base 10 log. The ceil(), floor(), and round()
operations are those in the C math library. Ceil() is the smallest integer not less than its argument. Floor() if the
largest integer not greater than its argument. Round() is the nearest integer to its argument.

The current values of other variables can be accessed by prepending a "v_" to the variable name. This will cause
that variable to be evaluated.

IMPORTANT NOTE: If you define variables in circular manner like this:

variable a equal v_b
variable b equal v_a
print $a

then SPPARKS will run for a while when the print statement is invoked!

Another way to reference a variable in a formula is using the $x form instead of v_x. There is a subtle difference
between the two references that has to do with when the evaluation of the included variable is done.

Using a $x, the value of the include variable is substituted for immediately when the line is read from the input
script, just as it would be in other input script command. This could be the desired behavior if a static value is
desired. Or it could be the desired behavior for an equal−style variable if the variable command appears in a loop
(see the jump and next commands), since the substitution will be performed anew each time thru the loop as the
command is re−read. Note that if the variable formula is enclosed in double quotes, this prevents variable
substitution and thus an error will be generated when the variable formula is evaluated.

Using a v_x, the value of the included variable will not be accessed until the variable formula is evaluated. Thus
the value may change each time the evaluation is performed. This may also be desired behavior.

96

As an example, if the current simulation box volume is 1000.0, then these lines:

variable x equal vol
variable y equal 2*$x

will associate the equation string "2*1000.0" with variable y.

By contrast, these lines:

variable x equal vol
variable y equal 2*v_x

will associate the equation string "2*v_x" with variable y.

Thus if the variable y were evaluated periodically during a run where the box volume changed, the resulting value
would always be 2000.0 for the first case, but would change dynamically for the second case.

Restrictions:

All universe− and uloop−style variables defined in an input script must have the same number of values.

Related commands:

next, jump, include, print

Default: none

97

SPPARKS WWW Site − SPPARKS Documentation − SPPARKS Commands

volume command

Syntax:

volume V

V = volume of system (liters)•

Examples:

volume 1.0e−10

Description:

This command sets the volume of the system for use in the app_style chemistry application.

For example, it could be the volume of a biological cell within which biochemical reactions are taking place.

Restrictions:

This command can only be used as part of the app_style chemistry application.

Related commands:

app_style chemistry

Default: none

98...1

http://www.cs.sandia.gov/~sjplimp/spparks.html

	Table of Contents
	
	SPPARKS Documentation
	1. Introduction
	1.1 What is SPPARKS
	1.2 SPPARKS features
	Pre- and post-processing:
	1.4 Open source distribution
	1.4 Acknowledgments and citations

	2. Getting Started
	2.1 What's in the SPPARKS distribution
	2.2 Making SPPARKS
	2.3 Making SPPARKS with optional packages
	2.4 Building SPPARKS as a library
	2.5 Running SPPARKS
	2.6 Command-line options

	3. Commands
	3.1 SPPARKS input script
	3.2 Parsing rules
	3.3 Input script structure
	3.4 Commands listed by category
	3.5 Individual commands

	4. How-to discussions
	4.1 Running multiple simulations from one input script
	4.2 Coupling SPPARKS to other codes

	5. Example problems
	6. Performance &scalability
	7. Additional tools
	8. Modifying &extending SPPARKS
	Application styles
	Diagnostic styles
	Input script commands
	Solve styles

	9. Errors
	9.1 Common problems
	9.2 Reporting bugs
	9.3 Error &warning messages
	Errors:
	Warnings:

	add_reaction command
	add_species command
	app_style chemistry command
	app_style diffusion command
	app_style diffusion/table command
	app_style diffusion/nonlinear command
	app_style ising command
	app_style ising/single command
	app_style membrane command
	app_style pore command
	app_style pore/nonlinear command
	app_style potts command
	app_style potts/neigh command
	app_style potts/neighonly command
	app_style potts/variable command
	app_style potts/pin command
	app_style command
	app_style surface command
	app_style test/group command
	clear command
	count command
	diag_style cluster command
	diag_style energy command
	diag_style eprof3d command
	diag_style command
	dump command
	echo command
	ecoord command
	if command
	include command
	inclusion command
	jump command
	label command
	log command
	next command
	pin command
	print command
	reset_time command
	run command
	sector command
	seed command
	shell command
	app_style command
	app_style command
	solve_style command
	app_style command
	stats command
	sweep command
	temperature command
	variable command
	volume command

